
Distributed Policy Optimization under Partial Observability:
Tractability, Linear Speedup, and Communication Efficiency

Tonghe Zhang∗

Tsinghua University
Sudeep Salgia†

Carnegie Mellon University
Yuejie Chi†

Carnegie Mellon University

October 2024

Abstract

We consider the problem of policy optimization within the context of Partially Observable Markov
Decision Processes (POMDPs) in a distributed setting where M clients collaborate under the coordination
of a central server. We develop a new theoretical framework to characterize the performance of distributed
policy optimization for POMDPs. Specifically, we propose a novel actor-critic framework, where the agents
collaboratively perform policy improvement and evaluation to maximize the benefit of parallelization.
Under linear function approximation, we rigorously establish global convergence rates for a wide range
of softmax policies, achieving linear speedup in sample complexity along with sublinear communication
complexity. Our analysis builds on a novel, sharp bound for local drift terms and a parameter stacking
technique to analyze temporal correlations that are of independent interest in studying POMDPs.

Keywords: Partially-observable Markov Decision Process, linear speedup, communication efficiency

Contents
1 Introduction 2

1.1 Contributions . 3
1.2 Related Work . 3

2 Problem Formulation 4

3 Algorithm Design 6
3.1 Policy Evaluation . 6
3.2 Policy Improvement . 8

4 Main Results with Discussion 9
4.1 Policy Evaluation . 9
4.2 Policy Improvement . 10
4.3 The Actor-critic Framework . 11

5 Proof Outline 12
5.1 Policy Improvement . 12
5.2 Policy Evaluation . 13

6 Conclusion and Future Work 14

A Preliminaries 19
A.1 Arithmetic Relations . 19
A.2 Policy Gradient for POMDPs . 19

∗Department of Electronic Engineering, Tsinghua University; zhang-th21@mails.tsinghua.edu.cn
†Department of Electrical and Computer Engineering, Carnegie Mellon University; {ssalgia,yuejiec}@andrew.cmu.edu.

1

B Distributed TD learning for POMDPs 20
B.1 Proof of Auxiliary Lemmas . 20
B.2 Proof of Theorem 1 . 28
B.3 Proof of Lemma 1 . 28

C Distributed NPG for POMDPs 29
C.1 Proof of Auxiliary Lemmas . 29
C.2 Proof of Lemma 2 . 35
C.3 Proof of Theorem 3 . 35

1 Introduction
Reinforcement learning (RL) is a sequential decision-making process where an agent aims to maximize

her cumulative reward through repeated interactions with an unknown environment [47]. RL is described by
the Markov Decision Process (MDP) [40], in which the agent chooses an action at each moment based on the
current state and receives a reward. The environment then transitions to a new state in response to this
action. An essential assumption in MDPs is that the agent has complete knowledge of the environment’s
state at every moment. However, in many practical applications, such as predicting stock prices [23] and
training humanoid robots [27], the agent has access only to unreliable or incomplete information about the
environment’s state. We model these sequential decision-making problems as Partially Observable Markov
Decision Processes (POMDPs) [36]. In a POMDP, unlike an MDP, the agent takes action based solely on
noisy observations of the states.

While POMDPs provide significant modeling flexibility, theoretical investigations into their tractability
present a discouraging outlook. [38] and [21] have established that obtaining the optimal policy for POMDPs
using exact methods, such as dynamic programming, is computationally and statistically intractable. Further-
more, existing RL theories for POMDPs often emphasize learning the transition dynamics while assuming
access to a perfect planning algorithm, whose computational complexity is prohibitive in large observation
space [17, 21, 30]. Despite these discouraging theoretical results, POMDP algorithms based on deep reinforce-
ment learning have achieved tremendous empirical success [34, 59]. The adoption of neural networks enables
the extraction of structured representations from historical observations, which is advantageous for policy op-
timization, albeit at the cost of an additional approximation error [14]. More importantly, empirical methods
have also demonstrated the benefits of parallelization in the policy optimization of POMDPs [10, 42, 48] (see
Fig 1 for an illustration).

In this work, we take the first step to bridge this gap between theory and practice by developing new
theoretical results that explain the empirical success of POMDPs, particularly in the parallel setting.

Figure 1: The left figure, adapted from Figure 4(b) in [42], demonstrates that partially observable RL is consistently
accelerated when more agents are trained in parallel, even though it involves greater complexity than MDPs. This
phenomenon is what our theory seeks to explain. The right figure illustrates practical solutions for POMDPs, where
actor and critic networks carry out massively parallel policy optimization after processing feature representations
extracted from historical inputs. The colored region highlights the procedure we aim to analyze.

2

1.1 Contributions
We study the problem of distributed reinforcement learning in partially observable environments, where

multiple agents collaboratively learn the optimal policy of a shared, underlying POMDP. We develop
novel theoretical results that explain the success of practical POMDP algorithms in distributed setups.
We demonstrate how these methods trade the computation complexity off with extra error in function
approximation and optimization, which is the key to their scalability. We also show why policy optimization
for POMDP benefits from data parallelism, similar to MDP, and where the fundamental differences lie in
their convergence rates. Our contributions include:

• Algorithm: We propose algorithms to model practical policy evaluation and improvement for POMDPs,
preserving key ingredients of distributed optimization, such as client-server communication, multiple
local steps, stochastic gradients, and weighted averaging.

• Complexity: We establish global convergence rates for a wide range of softmax policies. Under linear
function approximation, we show that our algorithms enjoy linear speedup in sample complexity and a
communication complexity that is sublinear in the computation cost per agent. These terms, as well as
the computation complexity, are independent of the sizes of the state and observation space.

• Technique: We offer new methods to analyze distributed POMDP training from a theoretical standpoint
and a technique to bound the local drift effect with Riemannian integration.

1.2 Related Work
Partially-observable RL Existing POMDP theories primarily focus on learning transition dynamics for
subclasses of POMDPs with polynomial sample complexity [8, 31]. Such studies usually assume access to
black-box planning algorithms [21, 28, 30], which outputs the value function and the corresponding optimal
policy, given estimated transition kernels. Their analysis crucially relies on a perfect planner. While few
works advance these results with detailed designs for the planning oracles [16, 18], their methods involve
an exhaustive search over all possible sample paths of observations, consuming computation and memory
resources that scale exponentially with the size of the observation space. Recent studies [9, 58] improve the
tractability of theoretical POMDP algorithms with parameterized policies. However, they did not analyze
the sample complexity in policy optimization and failed to explain how parallel training accelerates this
process. Our work stands out distinctly from these results. We provide a finite-time sample complexity
analysis on the error in the planning procedure, which is irrelevant to the size of observation space, and
quantitatively characterize how our algorithm benefits from massive parallel training, aligning with the
empirical phenomenon observed in [42].

Algorithm Continuous
Observation

Exhaustive
Search

Planning
Error Analysis

Distributed
Training

OMLE
[30] % ! N/A %

PORL2

[19] % ! N/A %

µLV-Rep
[58] ! % N/A %

DPAC
(Ours, Alg. 1) ! % ! !

Table 1: Comparison of representative theoretical POMDP algorithms with Algorithm 1. “Exhaustive search” refers
to an ideal planning process that finds the optimal policy by taking the maximum argument of the value function or
exploring all possible histories using dynamic programming.

3

Distributed Policy Optimization. Recent distributed (federated) policy gradient methods mainly focus
on Markov policies [52] with tabular softmax parameterization [56]. Their data parallel routine synchronizes
every iteration [26], resulting in high communication costs. We extend previous results to history-dependent
policies with general softmax parameterization, while allowing multiple local steps between updates. Table 2
presents a comparison between these studies.

Algorithm Sample
Complexity

Global
Convergence

Linear
Speedup

Local
Steps

Partial
Observation

FedNPG-ADMM
[26] O

(
1

(1−γ)6Mϵ2

)
% % % %

FedNPG
[56]

O
(

(1−γ)−11.5

√
Mϵ

7
2

)
! % % %

FEDHAPG-M
[52] O

(
1

Mϵ3/2

)
% ! ! %

DPPG
(Ours, Alg. 3) O

(
H4

Mϵ4

)
! ! ! !

Table 2: Comparison of our policy improvement algorithm 3 with distributed policy gradient algorithms for MDPs.
dθ denotes the dimension of the policy’s parameters, M is the number of parallel machines and T is the number of
gradient computation per machine.

Many existing works on distributed (federated) TD learning focus on a decentralized manner [12] or did
not contain a linear speedup analysis in their sample complexity [32]. Our policy evaluation method extends
recent TD learning studies [49, 53] from MDPs to POMDPs, ensures sublinear communication complexity,
and relaxes the condition for achieving linear speedup in sample complexities, which is crucial to massively
parallel training. See Table 3 for a comparison.

Algorithm Sample
Complexity

Speedup
Condition

Communication
Complexity

Partial
Observation

FedTD(0)
[53] O

(
d2Q

νϕ2Mϵ

)
M ≪ T N/A %

TD(0) with
local state [49] Õ

(
1

νϕ2Mϵ

)
M ≪ T One-shot %

DPTD
(Ours, Alg. 2) Õ

(
Hσ2

g
νϕ

+HdQ

Mϵ

)
Allow for
Large M

Sublinear
in T !

Table 3: Comparison between our policy evaluation algorithm 2 and distributed TD learning algorithm for MDPs.
νϕ is the condition number of linear function approximation.

2 Problem Formulation
Notations. We use ≲ or Õ to omit constants or logarithmic factors in the expressions, respectively. For
p ∈ [1,∞] and v, w ∈ Rd, ∥v∥p denotes the p-norm of the vector v and ⟨v, w⟩Rd denotes the inner product
between the vectors v and w. We use ∆(X) to denote the probability simplex over a finite set X . For matrices
A and B, the notation A ⪰ B implies A−B is positive semi-definite. We denote the Moore-Penrose pseudo-
inverse of a matrix A using A†. Lastly, for probability distributions P and Q, DKL(P ||Q) = EX∼P

[
log p(X)

q(X)

]
denotes the Kullback-Leibler (KL) divergence between P and Q.

4

The POMDP Model. We consider an episodic Partially Observable Markov Decision Process with a
state space S, action space A, observation space O and a discount factor γ ∈ (0, 1) over a finite horizon H.
We assume that the action space is finite, while state and observation spaces can be potentially continuous
sets. A POMDP is associated with a deterministic reward function rh : S × A → [0, 1], transition kernel
Th,a(·|s) : S × A → S and emission matrix Oh(·|s) : O → S for all h ∈ {0, 1, . . . ,H − 1}. At any time
h, let sh denote the state of the environment. When the agent takes an action ah, it receives a reward
rh(sh, ah) and results in the environment to transition into state sh+1 ∼ Th,ah(·|sh). The agent then observes
oh+1 ∼ Oh+1(·|sh+1), which is used to take the next action ah+1. The initial state of the POMDP S0 is
drawn from a distribution ρ over the state space S.

Let Zh := (O0, A0, . . . , Oh−1, Ah−1, Oh) ∈ Zh denote the set of observations and actions till time h, which
we refer to as the observable “history”. We also name Zh := (O ×A)h × O as the history space at time
h. A policy π is collection of mappings πh : Zh → ∆(A) for all h ∈ {0, 1, . . . ,H − 1}, where πh denotes
a rule for selecting actions at time h based on the history Zh such that πh(ah|Zh) is the probability of
choosing the action ah given the history Zh. For the simplicity of notation, we use the shorthand z̄h to denote
(zh, ah). Similar to MDPs, a policy π is associated with a value function and a Q-function, which we define
as follows [9]:

Vπt (zt) := Eπ
[
H∑
h=t

γh−trh(Sh, Ah)
∣∣Zt = zt

]
; Qπt (zt, at) := Eπ

[
H∑
h=t

γh−trh(Sh, Ah)
∣∣Z̄t = (zt, at)

]
. (1)

We also define an advantage function associated with a policy π, which is given by

Aπt (zt, at) := Qπt (zt, at)− Vπt (zt)

The learning objective is to find the policy π from a given class of policies Π that maximizes the expected
reward, i.e.,

sup
π∈Π

Eπ
[
H−1∑
h=0

γhrh(Sh, Ah)

]
. (2)

Policy Parametrization. For the convenience of policy optimization over a large observation space, we
associate the policies with a parameter θ ∈ Rdθ . When the action space is finite, we optimize the policies
within the class of history-dependent softmax policies [1], which take the form of

πθh(ah|zh) :=
exp fθ(zh, ah;h)∑

ah∈A exp fθ(zh, ah;h)
(3)

Here, fθ(·, ·;h) : Zh × A → R is a real-valued function for any time index h. Eq. (3) encompasses a wide
range of policies, including softmax policies with tabular representation, where fθ(zh, ah;h) = θ(zh, ah, h);
“log-linear policies,” where fθ(zh, ah;h) = θ⊤ξh(zh, ah) and ξh(zh, ah) is a known feature with dimension dθ;
and “neural softmax policies,” where fθ(·, ·; ·) is a non-linear sequential neural network.

Linear Function Approximation. Following the convention of theoretical RL [6, 35, 50], we adopt linear
function approximation for the Q-functions in a continuous observation space. We assume that the Q-function
of any policy π can be represented by a set of vectors {ψπh}

H−1
h=0 as follows: Qπh(zh, ah) = ⟨ϕh(zh, ah), ψπh⟩

for all (zh, ah) ∈ Zh × A and h ∈ {0, 1, . . . ,H − 1}. Here, vectors {ψπh}Hh=1 encode the information of the
policy, while {ϕh}H−1

h=0 denotes a collection of known functions where ϕh : Zh ×A → RdQ . These functions
{ϕh}Hh=1 form a compact representation of the POMDP dynamics at time h. A rich subset of POMDPs fall
satisfies this assumption, including tabular POMDPs, where value functions are the inner product between
the α-vectors and belief states [39] with d = |S|; L-decodable POMDPs [13] with rank drank transitions,
where Qh(zh, ah) = p⊤h ω

π
h and d = drank (see Eq. (11) in [58], Prop 2.3 in [22] for details).

Remark 1. In this work, we primarily focus on policy optimization, assuming that the features are already
known. The problem of learning good feature representation has been well-studied for a various class of
POMDPs [18, 51, 58].

5

Distributed Optimization We consider reinforcement learning in a distributed (federated) regime, where
M agents collaboratively optimize a shared POMDP under the coordination of a central server. Each agent
independently optimizes their local parameters for K iterations, after which the central server aggregates the
parameters to update a central policy. The agents then synchronize their policies and begin the next phase of
local iterations, and we repeat this process for R rounds. We use T = RK to denote the total computation
budget per agent.

3 Algorithm Design
We present an actor-critic algorithm in which multiple agents solve a shared POMDP in a collaborative

manner. We refer to the algorithm as “Distributed Partially Observable Natural Actor Critic” (Alg. 1), or
“DPAC” for short.

Algorithm 1: DPAC
1: Initialize actor parameter θ0, critic parameter ψ0.
2: for round r in 0, 1, . . . , R− 1 do
3: Send θr, ψr to client agents
4: //Critic: policy evaluation
5: Evaluate Q-function Q̂π

θr by running Alg 2 for Te steps.
6: Send Q̂π

θr to client agents
7: //Actor: policy improvement
8: Approximate policy gradient ωr by running line 6 to 17 in Alg 3 with K local steps.
9: Update policy in central server θr+1 ← θr + ηr · ωr

10: end for
11: return Uniform mixture of θ0, θ1, . . . , θR−1

DPAC operates by alternately performing policy evaluation and improvement to optimize a shared policy.
At each iteration r, DPAC transmits the central policy, parameterized by θr, to parallel machines. During
this phase, each agent’s critic collaboratively estimates the Q-function corresponding to the central policy πθr
using an algorithm referred to as "Distributed Partially-observable Temporal Difference Learning" (Alg. 2),
abbreviated as "DPTD." After we aggregate the Q-function in the central server, DPAC executes another
routine named "Distributed Partially-observable Natural Policy Gradient" (Alg. 3), or "DPPG" for short. In
this step, multiple agents compute the policy gradient in parallel, and the results are subsequently combined
at the central server, leading to an update of the central policy. This iterative process continues for a total of
R rounds, after which DPAC returns a uniform mixture of the policies parameterized by {θ0, θ1, . . . , θR−1}.

In the following sections, we provide a detailed description of our policy evaluation and improvement
routines.

3.1 Policy Evaluation
The policy evaluation algorithm estimates the value function of a given policy. While this process

is well-understood for MDPs [1], designing a distributed pipeline for POMDPs presents three additional
challenges.

First, as [58] notes, POMDPs’ history-dependence leads to computational bottlenecks. Exact evaluation of
the value functions involves an exhaustive search through the history space ZH to calculate a marginalization
constant, bringing computational and spatial costs that scale with (OA)H . Second, unlike infinite-horizon
stationary MDPs, the Bellman operator for finite-horizon POMDPs is naturally time-variant, potentially
resulting in H consecutive regression problems [58]. However, optimization literature indicates [25] that
errors in a series of regressions could compound, hindering convergence and complicating finite-time analysis.
Furthermore, optimizing non-Markovian policies in finite horizon POMDPs requires preserving the temporal
correlation in transition tuples instead of sampling from the same stationary distribution in MDPs. Thirdly,
addressing the evaluation problem in parallel settings presents additional challenges, such as correcting the
cumulative bias in local updates.

6

To address the first problem, we introduce linear function approximation for the value functions, simplifying
the structure of the estimated Q-function. This transformation converts the dynamic programming problem
into a least-squares regression that minimizes the Bellman error [47] at each time step:

minimize
{ψh}

1

2
Eπ
[(
Qπh − ⟨ϕh(Z̄h), ψh⟩

)2] for all h ∈ {0, 1, . . . ,H − 1} (4)

The features ϕh provide a compact representation of POMDP transition dynamics, freeing us from computing
a complex normalizing constant in the Bellman backup. To avoid exhaustive history searches, we adapt
the Temporal-difference learning algorithm from MDPs to POMDPs [9], which updates the Q-function by
bootstrapping from its current estimate, thus allowing for direct optimization of the parameter ψh without
acquiring full knowledge of Qh+1.

To tackle the second challenge, we stack the parameter estimates ψh across all time steps and jointly
optimize the H consecutive Bellman errors. This approach prevents compounding error and enables parallel up-
dates of {ψh}h=0A

H−1, thereby speeding up optimization. Specifically, we define ψ = (ψ⊤
0 , ψ

⊤
1 , . . . , ψ

⊤
H−1)

⊤ ∈
RHdQ as the stacked vector of parameters, and we solve the following optimization problem:

minimize
ψ

Eπ(ψ), where Eπ(ψ) := 1

2
· E

[
H−1∑
h=0

γh
(
Qπh − ⟨ϕh(Z̄h), ψh⟩

)2]

To preserve the temporal correlation in the data, we sample entire roll-out trajectories Z̄H from the POMDP
model instead of individual transition tuples, as done in the MDP context. We then extract the first h tuples
to create Z̄h+1, which is used to compute the gradient for ψh:

gh(ψ; Z̄h+1) := −γhϕh(Z̄h) ·
(
rh + γϕh+1(Z̄h+1)

⊤ψh+1 − ϕh(Z̄h)⊤ψh
)

(5)

The term gh(ψ; Z̄h+1) is the semi-gradient [47]. We then stack gh throughout the time horizon:

g(ψ; Z̄H) :=
[
g0(ψ; Z̄1)

⊤, . . . , gH−1(ψ; Z̄H)⊤
]⊤

which are employed to update the Q-function estimates at each time instant, all at once,

ψr,k+1,m ← ψr,k,m − αr · g(ψr,k,m; Z̄H), (6)

Here, αr is the local learning rate in round r.
We solve the third challenge by carefully designing the data parallel routine. Each agent performs K local

updates and then sends its estimate ψr,K,m to the server. The server averages these estimates to produce
ψ̃r+1, which helps reduce variance across local machines. Agents then begin the next round of updates from
ψr+1,0,m = ψ̃r+1 for all m. We select a sufficiently small local learning rate αr to minimize the deviation
of local parameters from their recent synchronization ψ̃r+1. However, a smaller αr can also slow down
convergence. Drawing inspiration from [29, 53], we implement a weighted averaging strategy at the central
server:

ψ̃r+1 := (1− ηr)ψ̃r+1 + ηr
1

M

M∑
m=1

ψr,K,m = ψ̃r − ηrαr ·
∑
m

M

K−1∑
k=0

gh(ψ
r,k,m; z̄r,k,mh+1)

Since the gradients in the server possess less noise, it is safe to choose a larger global step size ηr for faster
convergence. While the bootstrapping technique increases the flexibility of the TD learning algorithm, it
also introduces bias into the gradient estimates [47]. Fortunately, this bias diminishes as the estimation
error decreases. This insight inspired us to discard inaccurate Q-function estimates from early iterations and
conduct a weighted averaging during the last R−R0 rounds, using quadratically increasing weights ωr. This
process allows us to produce the final Q-function estimate as:

ψ̂ =

R∑
r=R0

ωrψ̃
r

where R0 is a carefully chosen parameter, specified in Theorem 1.

7

3.2 Policy Improvement
Given the policy evaluation routine detailed in Section 3.1, we update the policy parameter by a variant of

the Natural Policy Gradient (NPG) algorithm [24]. NPG is a model-free RL algorithm with solid theoretical
justification, and it underpins many practical RL algorithms, such as TRPO [43] and PPO [44]. Building
upon previous works [4, 9], it is straightforward to adapt the NPG algorithm to POMDPs.

Algorithm 2: DPTD

1: Input policy π, feature {ϕh}H−1
h=0 , local l.r.

{αr}R−1
r=0 , global l.r. {ηr}R−1

r=0 , weights {wr}Rr=0.
2: Initialize ψ0,0,m ← 0, ψ̃r ← 0.
3: for round r = 0, 1, . . . , R− 1 do
4: //Distributed training
5: for machine m = 0, 1, . . . ,M − 1 in parallel do
6: for local step k = 0, 1, . . . ,K − 1 do
7: Sample Z̄r,k,mH from π

8: Compute g(ψr,k,m; Z̄r,k,mH) via Eq. (5)
9: ψr,k+1,m ← ψr,k,m−αrg

(
ψr,k,m; Z̄r,k,mH

)
10: end for
11: end for
12: Clients send ψr,K,m to server
13: //Centralized processing
14: Reduce variance ψ̄r+1 ← 1

M

∑M−1
m=0 ψ

r,K,m

15: Poliak averaging ψ̃r+1 ← (1− ηr) ψ̃r + ηrψ̄
r+1

16: Synchronize ψr+1,0,m ← ψ̃r+1

17: if r ≥ R0 : then
18: Weighted sum ψ̂ = ψ̂ + wr+1 · ψ̃r+1

19: end if
20: end for
21: return {Q̂h(·) = ⟨ϕh(·) , ψ̂h ⟩RdQ}H−1

h=0

Algorithm 3: DPPG
1: Input θ0, evaluation procedure PolicyEval(·)
2: for round r in 0, 1, . . . , R− 1 do
3: Evaluate policy in server Q← PolicyEval

(
πθr
)

4: Send θr,Q to client agents.
5: //Estimate gradient ω by distributed training
6: for machine m in 1, 2, . . . ,M in parallel do
7: Initialize ω0,m

r ← 0
8: for local step k in 0, 1, . . . ,K − 1 do
9: Collect trajectory Z̄k,mH by playing πθr

10: ωk+1,m
r ←
ωk,mr − ζk∇ωL̂Q

(
ωk,mr ; θr, Z̄

k,m
H

)
11: //Aggregate ω in server
12: if k ≡ 0 (mod I) then
13: ωk+1

r ← 1
M

∑M
m=1 ω

k+1,m
r

14: Synchronize ωk+1,m
r ← ωk+1

r

15: end if
16: end for
17: end for
18: //Update policy in server
19: Update policy by θr+1 ← θr + ηr · ωr
20: end for
21: return Uniform mixture of θ0, θ1, . . . , θR−1

NPG for POMDPs NPG updates policy parameter θ with

θt+1 ← θt + η · F†
θ∇θV

πθt (7)

Here, Fθ is the Fisher-information of policy πθ, which is defined as

Fθ := Eπ
θ

[
H−1∑
h=0

γh∇θ lnπθh(Ah|ZH)∇⊤
θ lnπθh(Ah|ZH)

]
(8)

for POMDPs [9]. Fθ corrects the direction of the gradient flow, resulting in faster convergence. For efficiency,
we do not compute the pseudo-inverse in Eq. (7). Instead, we approximate the corrected gradient F†

θ∇θVπ
θt

as a whole, according to a process called “compatible function approximation” [24]:

ω⋆ ∈ argmin
ω∈Rd

Eπ
θ

[
H−1∑
h=0

γh
(
ω⊤∇θ lnπ

θ

h (Ah|ZH)− Aπ
θ

h (Zh, Ah)
)2]

(9)

Eq. (9) results in θt+1 ← θt + η · ωt and we refer to ωt as the “NPG direction”, or the NPG “policy gradient”.
This result is straightforward to extend to finite-horizon discounted POMDPs [9], in which we minimize the
function

LA(ω; θr, π
θr) := Eπ

[
H−1∑
h=0

γh
(
ω⊤∇θ lnπθh(Ah|ZH)− Aπ

θr

h (ZH , Ah)
)2]

(10)

8

Q-NPG Eq. (9) adapts to a general policy class on continuous action spaces. However, it relies on a precise
estimate of the advantage function, which results in high sample complexity [2]. When the action space
is finite , we can alternatively optimize the NPG direction ω according to the “Q-NPG” update rule [1].
This method does not require an advantage function estimate, and we can instead estimate the Q-function
with temporal difference learning introduced in Section 3.1. The Q-NPG rule obtains ω by minimizing the
following function:

LQ(ω; θr, π
θr) :=Eπ

θr

P

H−1∑
h=0

γh
(
ω⊤∇θfθr (Zh, Ah;h)− Qπ

θr

h (Z̄h)
)2

(11)

We use parallelized linear regression [20] to approximate the policy gradient ωr, using samples of the function

L̂Q(ω; θ; Z̄H) :=
∑H−1
h=0 γ

h
(
Qπ

θr

h (Z̄h)− ω⊤∇θfθr (Zh, Ah;h)
)2

. This approach provides a distributed, model-
free policy improvement algorithm for POMDPs (Algorithm 3), which we refer to as “Distributed Partially-
observable Natural Policy Gradient” (DPPG).

4 Main Results with Discussion
In this section, we provide theoretical guarantee for Algorithms 2, 3, and 1.

4.1 Policy Evaluation
Several regularity conditions are necessary for a theoretical understanding of Algorithm 2, which are

standard in optimization literature [7].

Definition 1 (Bounded gradient norm). There exists G ∈ R+, such that ∀ψ : EZh
∥g(ψ;Zh)∥2 ≤ G

Definition 2 (Bounded gradient noise). There exists σ2
g > 0, such that Var

[
gh(ψ; Z̄h)

]
≤ σ2

g

Definition 3 (Well-defined features). ∃ constant µϕ ∈ R+, s.t. Eπθ
[∑H−1

h=0 γ
h ϕh(z̄h)ϕh(z̄h)

⊤
]
⪰ µϕ · Id

Similar condition ∀θ : E
s∼dπθ [ϕ(s)ϕ(s)⊤] ⪰ µϕ · Id is commonly used in the theory of TD learning and

Actor-critic algorithms for MDPs [6, 41, 45, 50]. We extend this to finite-horizon POMDPs by using multiple
linear features ϕh to capture the temporal relations of POMDPs, and substituting the stationary distribution
dπ

θ

with the sample path probability. We also define νϕ = µϕ(1 − γ) as the ill-condition number of TD
learning.

Next, we detail the error in distributed TD learning for POMDPs with linear function approximation.
The proof can be found in Appendix B.2.

Theorem 1 (Bellman Error Bound for Algorithm 2). Set ιr = a
µϕ(1−γ)(r+a) where a is any constant larger

than 9
2 . For any local learning rate αr ≤ µϕ(1−γ)

16T and global learning rate defined via ηr := ιr
αrK

, the Bellman
error of Algorithm 2’s output parameter is controlled by the following upper-bound

EE
(
ψ̂R
)
≤ Õ

(
HdQ
R3

+
1

νϕ2

[
min

{
1

νϕ2T 2
,
1

R2

}
G2 +

(
min

{
1

νϕ2KT 2
,

1

TR

}
+

1

MT

)
Hσ2

g

])
(12)

if we do stochastic averaging with weights wr ∝ (r + 2)2 after R0 = 128a
νϕ2 rounds of synchronizations. σ2

g and
G are specified in Definitions 2 and 1.

Theorem 1 immediately implies the following corollary, whose proof is provided in Appendix B.3.

Corollary 1 (Complexity of Algorithm 2). Pick K = min

{
T 2/3

M1/3 ,

√
2
e

Hσ2
g

G
T
M , TM

}
. Under the conditions of

Theorem 1, Algorithm 2 returns an ϵ-accurate Q-function estimate using only

Neval = Õ

(
1

Mϵ

(
Hσ2

g

νϕ2
+HdQ

))
(13)

9

sample trajectories per agent, within R = max
{
(MT)1/3, e2M,

√
e
2

G
Hσ2

g
MT

}
rounds of communications.

Moreover, given sufficient computation T
M ≥ 1

νϕ2
G2

Hσ2
g
, we can pick K = T 2/3

M1/3 and obtain Õ
(
Hσ2

g+Hd

νϕ2MT

)
sample complexity using only R = (MT)1/3 rounds of communications. In either case, the algorithm requires
Ceval = O (THdQ) basic operations per agent.

Remark 2 (Interpretation of Theorem 1). The coefficients min
{

1
νϕ2KT 2 ,

1
TR

}
and min

{
1

νϕ2T 2 ,
1
R2

}
are

novel ingredients compared with previous works such as [53, 55], owning to a precise characterization on the
drift terms in Lemma 5. Corollary 1 shows that our algorithm achieves a linear speedup in sample complexity
with only a few sublinear communication rounds relative to total computation T .
Remark 3 (Adjust Data Parallelism According to Feature Representation). Corollary 1 reveals that, when
our optimization conditions are mild (νϕ is large and the gradients are small), we can safely adopt longer local
updates K = T 2/3

M1/3 to reduce communication costs while allowing computation to drive policy optimization.
However, when the feature matrix becomes ill-defined (when µϕ is small), we need to take fewer local steps
to prevent the drift terms from exploding. A detailed analysis is provided in Lemma 5.

4.2 Policy Improvement
Next, we present regularity conditions for a theoretical understanding of Algorithm 3.

Definition 4 (Bounded KL Divergence). The KL divergence between the policies is finite. In particular, the
optimal and the initial policy have a KL divergence below some finite D: DKL

(
π⋆h(·|zh)||π

θ0
h (·|zh)

)
< D

Definition 5 (Smooth Score Functions). ∃β ∈ R+, s.t.
∣∣∣∇θ lnπθ′h (ah|zh)−∇θ lnπθh(ah|zh)

∣∣∣ ≤ β ∥θ′ − θ∥2
Assumption 4 and 5, are essential even for the convergence of single-agent NPG with exact gradients.

The following three conditions are unique to distributed NPG using noisy gradients, which are proposed to
describe the statistical property of ∇LA.

Definition 6 (Bounded Gradient Noise). There exists σ2
w > 0, such that E

[∥∥∥∇ωLQ −∇ω L̂Q

∥∥∥2
2

]
≤ σ2

w

Definition 7 (Bounded Gradient Norm). The optimal and estimated NPG gradients are reasonably large:
∃W > 0,

∥∥ωk,mr ∥∥
2
, ∥ω⋆∥2 ≤W a.s.

Definition 8 (Non-degenerate Fisher Matrix). For any parameter θ, matrix Fθ defined in Eq. (8) has positive
eigenvalues greater than µF

2 and less than L
2 .

Definition 8 implies that LA is µF -strongly convex, which ensures the uniqueness of ω⋆. This is a common
and not overly restrictive assumption in the theories of NPG algorithms for MDPs, from the original work
proposing NPG [24] to more recent studies such as [57] (Eq. (37)) and [33] (Assumption 2.1). A broad class
of practical policies, such as Gaussian policies, satisfy this condition (see page 5 of [33]).

Definition 9 (Sample-path Coverage). The concentratability coefficient between the trajectory probabilities
induced by π⋆ and πθr is almost surely finite:

κr := Eπ
⋆ dPπ⋆

dPπθr
< +∞ (14)

We also define κ := Eθ0:R−1

1
R

∑R−1
r=0 κr, where the expectation is taken w.r.t. the randomness in NPG.

Remark 4 (Interpretation of κ). Assumption 9 is proposed to establish the global convergence of Algorithm 3.
Eq. (14) is equivalent to κr = Eπ⋆ ∏H−1

t=0
π⋆
t (At|Zt)

πθr
t (At|Zt)

< +∞, indicating the learned policies are exploratory
enough to find the best actions. The assumption is satisfied or relaxed when π belongs to tabular soft-max or log-
linear policies [2]. It generalizes similar restrictions from MDP theory [56], such as E(s,a)∼dπ⋆

[
dπ

⋆
(s,a)

dπ
θt (s,a)

]
≤ C

, to POMDPs, however with the stationary distribution d replaced with sample path probability P. A similar
assumption is also adopted in POMDP theory [9] to establish global convergence. We provide an analysis on
κr in Appendix C.1.2 using information theoretical technique.

10

We introduce two terms to evaluate the performance of solving the NPG direction ω. The first one is the
statistical error, denoted as ϵstat(ω; θr) = LQ(ω; θr;π

θr)− infω LQ(ω; θr;π
θr), measures the accuracy of our

linear regression solution. The second is the approximation error, ϵapprox(θr) = infω LQ(ω; θr;π
θr), represents

the minimum error possible in approximating the Q-function with a linear combination of the coordinates
of ∇θfθ. For a rich neural policy class, ϵapprox(θr) is very small [54]. In Section 3.1, we use the empirical
estimate Q̂ in place of the Q-function for these definitions.

Building upon the literature on mirror descent [7], local SGD [46], and POMDP [9], we establish a global
convergence rate for solving large POMDPs under softmax policy parameterization.

Theorem 2 (Global Convergence of Algorithm 3). Set ζk = 4
µF (k+a) where a = qI+4 with q being a constant

satisfying q exp
(
− 2
q

)
< L

µF

√
192

(
M+1
M

)
, I = O

(
T 1/3

M2/3

)
, ηr =

√
2D/β

W
√
R

. Under regularity conditions 8, 5,
and 9, the expected functional suboptimality of the outputs of Algorithm 3 is

Vπ
⋆

− E

[
1

R

R−1∑
r=0

Vπ
θr

]
≲ HW

√
βD

R
+

1

µF

√
κHLσ2

w

MK
+
√
κH

√√√√ 1

R

R−1∑
r=0

E ϵapprox(θr) (15)

under exact policy evaluation.

The proof is derived from Lemma 1, 2 and 11.

Remark 5 (Interpretation of Theorem 2). The first term in Eq. (15) is determined by the initialization error
D (cf. (4)). The second term stands for the optimization error in solving the NPG gradient ω using linear
regression. It benefits from distributed training and is the source of a linear speedup in sample complexity.
The third term, an error floor, accounts for function approximation error inherent in NPG methods. Compared
to MDPs, the first term in the POMDP error bound scales with an extra

√
H and the other terms scales with

H, indicating increased complexity due to greater historical dependency. The last two terms also depend on
κ (Eq. (14)), which is essential for achieving global convergence (cf. Remark 4).

The sample and communication complexity of Algorithm 3 by the following corollary, whose proof is
provided in Appendix C.2.

Corollary 2 (Complexity of Algorithm 3). Pick K =
√

T
M . When the function approximation error is small,

Algorithm 3 promises ϵ-optimality with

Nimprove = Õ
(
H4W 4β2D2 + κ2/µ4

FH
2L2σ2

w

Mϵ4

)
(16)

sample trajectories for each parallel machine. In total, we need to communicate

pimprove = O
(
M1/2T 1/2 + T 5/6M−1/6

)
times to synchronize the policy parameter θr with its gradients ωr, whose dimensions are dθ. The computation
consumption is Cimprove = O (THdθ)

Remark 6 (Speedup Effect). Eq. (16) implies that as parallel machines increase M times, the sample
consumption per agent is reduced M -fold, showing a linear speedup in sample complexity. Meanwhile, the
number of communications scales sublinearly with the computational budget and linearly with parameter
dimension d, while irrelevant with the space sizes. This explains why we can significantly accelerate POMDP
solvers when thousands of agents are simulated in parallel [42], even in continuous settings.

4.3 The Actor-critic Framework
Combining Theorem 2 and 1, we obtain a theoretical guarantee for our Actor-Critic algorithm 1. The

proofs can be found in Appendix C.3.

11

Theorem 3. Under the requirements of Theorem 2 and 1, running Algorithm 1 with Te steps of policy
evaluation ensures functional suboptimality of

Vπ
⋆

− E

[
1

R

R−1∑
r=0

Vπ
θr

]
≲ HW

√
βD

R︸ ︷︷ ︸
Initialization

+
1

µF

√
κHLσ2

w

MK︸ ︷︷ ︸
Optimization

+
1

νϕ

√
κH2

(
dQ + σ2

g

)
MTe︸ ︷︷ ︸

Evaluation

+
√
κHϵapp︸ ︷︷ ︸

Approximation

(17)

Where we abbreviated 1
R

∑R
r=1 E ϵapprox(θr) as ϵapp. Regularity constants D, β, σ2

w, κ, L, σ2
g , and νϕ are

defined in Definitions 4, 5, 6, 9, 8, 2, and 3.

Corollary 3 (Complexity of Algorithm 1).
Pick K = T 1/2

M1/2 and Te = K, Algorithm 1 achieves ϵ-optimality after consuming

Ntotal = Neval +Nimprove = Õ

(
C2

Mϵ4

)
sample trajectories, where C = H2W 2βD + κ

µ2
F
HLσ2

g +κH2
(
dQ+σ2

g

νϕ2

)
. To achieve this, we need to send

Ptotal = O
(
(MT)1/2 + T 5/6M−1/6

)
dθ + (MT)1/3dQ

floating-point parameters between the server and the clients. The total computation complexity is of order

Ctotal = O (TH(dθ + dQ))

Remark 7 (Benefit of Parallelism). Compared with Algorithm 3, Algorithm 1 suffers from an additional Bell-
man error, due to inexact policy evaluation. Fortunately, with linear and compatible function approximation,
Algorithm 1 preserves the linear speedup in sample complexity and sublinear communication complexity,
while its computation complexity is irrelevant with S,O. This explains why POMDP solvers benefit from
massive parallel training.
Remark 8 (Complexity Trade-off). Our complexities do not go against the info-theoretical hardness of
POMDPs [38]. Algorithm 1 only learns POMDPs whose value functions possess a linear structure, and the
suboptimality suffers from an extra error floor due to approximation error. Optimizing POMDPs is still
significantly harder than MDPs, which is revealed by additional dependency on

√
H in the first term of

Eq. (15) and a dependency on κ in the last three terms. This is because history-dependent policies have a
significantly more complex geometry than MDPs [37].

5 Proof Outline
We outline the proofs for the major theorems in Section 4, and defer the details to Appendix C and B.

5.1 Policy Improvement
First, we extend the regret lemma in RL theory [2] to POMDPs with general policies. We provide a proof

sketch in Appendix C.1.1 for completeness.

Lemma 1 (Regret Lemma for POMDPs, adapted from [9]).

Vπ
⋆

− E
1

R

R−1∑
r=0

Vπ
θr ≤ HW

√
2βD

R
+
√
κH

√√√√ 1

R

R−1∑
r=0

E LA(ωr; θr, πθr) (18)

Next, we decompose LA with simpler terms, whose proof is provided in Appendix C.1.3.

Lemma 2 (Error Decomposition, [9]). LA(ω; θ, π
θ) ≤ 2 · ϵstat(ω; θ) + 2 · ϵapprox(θ) + 4 · Eπθ

(
ψ̂
)
.

Moreover, the statistical error enjoys linear speedup,

Fact 1 (Informal version of Lemma 11). Under careful design, E ϵstat(ω; θr) ≲ L
µ2
F

σ2
w

MT

Theorem 2 directly result from Lemmas 1, 2 and 11.

12

5.2 Policy Evaluation
To show Theorem 1, we introduce the potential function U to characterize the parameter’s suboptimality.

Definition 10 (Potential Function in TD learning). U(ψ̃r+1) := E
∥∥∥ψ̃r+1 − ψ⋆

∥∥∥2
2

The improvement of the potential function decomposes into two terms:

U(ψ̃r+1) =U(ψ̃r) + 2E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
︸ ︷︷ ︸

Progression Direction

+ E
∥∥∥ψ̃r+1 − ψ̃r

∥∥∥2
2︸ ︷︷ ︸

Progression Distance

(19)

The term “Progression Direction” refers to the angle between ψ̃r+1− ψ̃r and ψ̃r − ψ̃⋆, indicating the direction
in which the synchronized parameters approach the global minimum ψ⋆. In contrast, “Progression Distance”
measures the step size of the parameter update. These terms are governed by the following two lemmas, with
their proofs available in the Appendix B.1.1 and B.1.2, respectively.

Lemma 3 (Progression Direction). For any constant c ∈ R+ the progression direction is controlled by

Progression Direction ≤ (ηrαrK) ·
[
1

2c
U
(
ψ̃r
)
+ E

〈
ψ̃r − ψ⋆,EZH

g
(
ψ̃r;ZH

)〉
+ 8c · drift(r)

]
Lemma 4 (Progression Distance). The progression distance has the following upper bound:

Progression Distance ≤ (ηrαrK)2 ·
[
4
∥∥∥EπZ̄g (ψ̃r; Z̄)∥∥∥2

2
+

2Hσ2
g

MK
+ 64 · drift(r)

]
The term ιr := ηrαrK is the composite learning rate for each policy update, considering global and

accumulated local updates. The constant c in Lemma 3 arises from Young’s inequality (Fact 2), providing
extra flexibility in designing the learning rate. Lemma 4 shows that periodic averaging reduces variance by a
multiple of M , which is key to achieving linear speedup in sample complexity. In contrast to MDP theory, the
noise variance scales with H, highlighting how the historical dependency in POMDPs accumulates sampling
noise over the horizon. The term drift(r) measures how local models deviate from the recent global update.

Definition 11 (Local Drift). The local drift in round r is the average distance from the optimal parameter
between consecutive local updates on each machine. drift(r) :=

∑
m,k

MK E
∥∥ψr,k,m − ψ̄r∥∥2

2

We control the drift term with a sharp bound derived from Riemannian integrals (see Appendix B.1.3).

Lemma 5 (Local Drift Bound). When αr is less than µϕ(1−γ)
16T , the drift term in the r-th round is governed

by the following upper bound,

drift(r) ≤ Γ(K; νϕ)

(
Hσ2

g

K
+ 2G2

)
· α2

r

where Γ(K; νϕ) is defined as e
νϕ2

(
1− (1 + νϕ)e

−νϕK
)
, which is dominated by e

(1−γ)2µϕ
2 when µϕ ̸= 0 and γ ̸=

1, and it is controlled by eK2

2 otherwise. We prove this lemma in Appendix B.1.3.

Lemma 5 directly reveals how a smaller local leaning rate helps suppress the local drift effect. We also
propose a novel technique in Lemma 5, which connects the bound on the drift term with a Riemannian
integral, allowing us to provide tight bound for the feature covariant matrix with varying regularity. If
the problem is well-conditioned (νϕ > 0, γ < 1), we can increase K without causing large drift, but when
ill-conditioned (νϕ → 0), limiting local steps is necessary. Figure 2 illustrates these insights.

Bringing Lemma 5, 4, 4 to Eq. (19), we obtain the following Lemma, which reveals how the Bellman error
relates to the potential function, learning rates, and the gradient noise.

13

Figure 2: How local drift vary with K and νϕ. When νϕ is large, Γ(K; νϕ) ≤ e
νϕ

2 , we can take more local steps to
save communication. As νϕ → 0, the drift effect quickly deteriorates, which necessitates frequent synchronization.

Lemma 6 (Error Decomposition of TD learning). When local learning rate satisfies αr ≤ νϕ
16T while the

composite learning rate obeys ιr ≤ νϕ
128 , the Bellman error and the potential function obeys the following

inequality:

U
(
ψ̃r+1

)
≤
(
1− νϕ

2
ιr

)
U
(
ψ̃r
)
− νϕ

2
E E

(
ψ̃r
)
ιr +

9

4
Γ(K; νϕ)

(
Hσ2

g

RK3
+

2G2

RK2

)
ι2r +

(
2Hσ2

g

MK

)
ι2r (20)

where Γ(K; νϕ) is defined in Lemmma 5. The proof is deferred to Appendix B.1.4.

We remark that the restrictions on αr and ιr are proposed to suppress the Bellman error. These
constraints also meets the requirement of Lemma 5. Rearranging terms in Eq. (20) and sum up either sides
with quadratically increasing weights after r ≥ R0, we conclude the proof of Theorem 1. The technique is
shown in Appendix 1.

6 Conclusion and Future Work
This work establishes the first theoretical framework for understanding the empirical success of distributed

policy optimization in solving large POMDPs. Comprehensive complexity results, novel analytical techniques,
and extensive explanations are of independent interest to practitioners and theoreticians.

An exciting direction is to analyze how exploration helps improve regularity constants, which we leave for
future work.

14

References
[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and

algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient
methods: Optimality, approximation, and distribution shift. Journal of Machine Learning Research,
22(98):1–76, 2021.

[3] Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information geometry, volume 64.
Springer, 2017.

[4] Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation. journal of artificial
intelligence research, 15:319–350, 2001.

[5] Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Operations
Research, 2024.

[6] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learning
with linear function approximation. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors,
Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning
Research, pages 1691–1692. PMLR, 06–09 Jul 2018.

[7] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

[8] Qi Cai, Zhuoran Yang, and Zhaoran Wang. Reinforcement learning from partial observation: Linear
function approximation with provable sample efficiency, 2022.

[9] Semih Cayci and Atilla Eryilmaz. Recurrent natural policy gradient for pomdps, 2024.

[10] Wenhao Cui, Shengtao Li, Huaxing Huang, Bangyu Qin, Tianchu Zhang, Hanjinchao, Liang Zheng,
Ziyang Tang, Chenxu Hu, Ning Yan, Jiahao Chen, and Zheyuan Jiang. Adapting humanoid locomotion
over challenging terrain via two-phase training. In Proceedings of the Conference on Robot Learning
(CoRL), September 2024. Accepted.

[11] Gal Dalal, Balázs Szörényi, Gugan Thoppe, and Shie Mannor. Finite sample analyses for td (0) with
function approximation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[12] T. T. Doan et al. Finite-time analysis of distributed td(0) with linear function approximation for
multi-agent reinforcement learning. Artificial Intelligence, 123:950–973, 2023.

[13] Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforcement
learning with a short-term memory. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 5832–5850. PMLR, 17–23 Jul
2022.

[14] Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer q-networks for partially
observable reinforcement learning. CoRR, abs/2206.01078, 2022.

[15] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. Learning in observable pomdps, without computa-
tionally intractable oracles. Advances in Neural Information Processing Systems, 6 2022.

[16] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. Planning in observable pomdps in quasipolynomial
time. arXiv preprint arXiv:2201.04735, 1 2022.

[17] Jiacheng Guo, Minshuo Chen, Huan Wang, Caiming Xiong, Mengdi Wang, and Yu Bai. Sample-efficient
learning of pomdps with multiple observations in hindsight. arXiv preprint arXiv:2307.02884, 2023.

15

[18] Jiacheng Guo, Zihao Li, Huazheng Wang, Mengdi Wang, Zhuoran Yang, and Xuezhou Zhang. Provably
efficient representation learning with tractable planning in low-rank POMDP. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 11967–11997. PMLR, 23–29 Jul 2023.

[19] Jiacheng Guo, Zihao Li, Huazheng Wang, Mengdi Wang, Zhuoran Yang, and Xuezhou Zhang. Provably
efficient representation learning with tractable planning in low-rank POMDP. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pages 11967–11997. PMLR, 2023.

[20] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local sgd
with periodic averaging: Tighter analysis and adaptive synchronization. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[21] Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement learning
of undercomplete pomdps. Advances in Neural Information Processing Systems, 33:18530–18539, 2020.

[22] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning
with linear function approximation. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of
Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pages 2137–2143. PMLR, 09–12 Jul 2020.

[23] Taylan Kabbani and Ekrem Duman. Deep reinforcement learning approach for trading automation in
the stock market. IEEE Access, 10:93564–93574, 2022.

[24] Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14. MIT Press, 2001.

[25] Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction errors
in learned dynamics models, 2022.

[26] Guangchen Lan, Han Wang, James Anderson, Christopher G. Brinton, and Vaneet Aggarwal. Improved
communication efficiency in federated natural policy gradient via admm-based gradient updates. CoRR,
abs/2310.19807, 2023.

[27] Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes in robotics:
A survey. IEEE Transactions on Robotics, 39(1):21–40, 2022.

[28] Jonathan N. Lee, Alekh Agarwal, Christoph Dann, and Tong Zhang. Learning in pomdps is sample-
efficient with hindsight observability, 2023.

[29] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

[30] Qinghua Liu, Alan Chung, Csaba Szepesvári, Szepesva@ualberta Ca, Chi Jin, Po-Ling Loh, and Maxim
Raginsky. When is partially observable reinforcement learning not scary? Proceedings of Machine
Learning Research, 178:1–46, 2022.

[31] Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvári, and Chi Jin. Optimistic mle – a generic model-based
algorithm for partially observable sequential decision making, 2022.

[32] R. Liu and Alexander Olshevsky. Distributed td(0) with almost no communication. IEEE Control
Systems Letters, 7:2892–2897, 2021.

[33] Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. Advances in Neural Information Processing Systems,
33:7624–7636, 2020.

16

[34] Guozheng Ma, Linrui Zhang, Haoyu Wang, Lu Li, Zilin Wang, Zhen Wang, Li Shen, Xueqian Wang, and
Dacheng Tao. Learning better with less: effective augmentation for sample-efficient visual reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2024.

[35] Hamid Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S Sutton.
Convergent temporal-difference learning with arbitrary smooth function approximation. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

[36] George E Monahan. State of the art—a survey of partially observable markov decision processes: theory,
models, and algorithms. Management science, 28(1):1–16, 1982.

[37] Johannes Müller and Guido Montúfar. The geometry of memoryless stochastic policy optimization in
infinite-horizon pomdps. arXiv preprint arXiv:2110.07409, 2021.

[38] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of markov decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987.

[39] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for large pomdps. Journal of
Artificial Intelligence Research, 27:335–380, November 2006.

[40] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Mathematical Statistics. Wiley, 1994.

[41] Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On finite-time convergence of actor-critic
algorithm. IEEE Journal on Selected Areas in Information Theory, 2(2):652–664, 2021.

[42] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,
2022.

[43] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

[45] Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Towards understanding asynchronous
advantage actor-critic: Convergence and linear speedup. IEEE Transactions on Signal Processing,
71:2579–2594, 2023.

[46] Sebastian U. Stich. Local sgd converges fast and communicates little, 2019.

[47] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[48] William Thibault, William Melek, and Katja Mombaur. Learning velocity-based humanoid locomotion:
Massively parallel learning with brax and mjx. arXiv preprint arXiv:2407.05148, July 2024. Accepted at
the CLAWAR 2024 conference in Kaiserslautern, Germany.

[49] Haoxing Tian, Ioannis Ch. Paschalidis, and Alex Olshevsky. One-shot averaging for distributed td(λ)
under markov sampling, 2024.

[50] John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function approxi-
mation. Advances in neural information processing systems, 9, 1996.

[51] Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, and Wen Sun. Provably efficient
reinforcement learning in partially observable dynamical systems, 2022.

[52] Han Wang, Sihong He, Zhili Zhang, Fei Miao, and James Anderson. Momentum for the win: Collaborative
federated reinforcement learning across heterogeneous environments, 2024.

17

[53] Han Wang, Aritra Mitra, Hamed Hassani, George J Pappas, and James Anderson. Federated td learning
with linear function approximation under environmental heterogeneity. Transactions on Machine Learning
Research, 2023.

[54] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

[55] Jiin Woo, Laixi Shi, Gauri Joshi, and Yuejie Chi. Federated offline reinforcement learning: Collaborative
single-policy coverage suffices, 2024.

[56] Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, and Yuejie Chi. Federated natural policy gradient
and actor critic methods for multi-task reinforcement learning, 2024.

[57] Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies, 2023.

[58] Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, and Bo Dai. Provable representation
with efficient planning for partial observable reinforcement learning, 2024.

[59] Ziwen Zhuang, Shenzhe Yao, and Hang Zhao. Humanoid parkour learning. arXiv preprint
arXiv:2406.10759, 2024.

18

A Preliminaries

A.1 Arithmetic Relations
Fact 2. Young’s inequality

• ∀a, b ∈ R, η ∈ R+ : ab ≤ 1
2ηa

2 + η
2 b

2.

• ∀A, a ∈ R, η ∈ R+ : A2 ≤ (1 + η)(A− a)2 +
(
1 + 1

η

)
a2

• ∀a, b ∈ R : (a+ b)2 ≤ 2a2 + 2b2

Fact 3. Jensen’s inequality

• ∀n ∈ Z+, ai ∈ R : (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i

• ∀a, b, c,∈ R : (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2

A.2 Policy Gradient for POMDPs
We extend the policy gradient theory from MDP to POMDPs. The results are adapted from [4, 9, 36, 58].
In partially observable reinforcement learning, we aim to find the policy that maximizes the value function

Vπ = Eπ
[
H−1∑
h=0

γh rh(Sh, Ah)

]

We can write the Bellman equations in the following format:

Vπt (zt) =Eπt [Qπt (z̄t = (zt, At))]

Qπt (zt, at) =E
[
rt(St, at) + γ Vπt+1(Zt+1 = (zt, at, Ot+1))

∣∣Z̄t = (zt, at)
] (21)

Similar to MDPs, the difference in the value functions of different policies is associated with the advantage
function:

Lemma 7. (Performance Difference Lemma for POMDP) For any policy π′, π,

Vπ
′
− Vπ = Eπ

′

[
H−1∑
h=0

γh Aπh(Zh, Ah)

]

We can also smoothly generalize policy gradient theorems [47] to POMDPs by the following lemma:

Theorem 4 (Policy Gradient Theorem for Finite-horizon Discounted Reward POMDPs).

∇θVπ = Eπ
θ

[
H−1∑
h=0

γhQπ
θ

t (Zt, At)∇θ lnπθt (At|Zt)

]
= Eπ

θ

[
H−1∑
h=0

γhAπ
θ

t (Zt, At)∇θ lnπθt (At|Zt)

]
(22)

Remark 9. We can write Eq. (22) in another way:

∇θVπ
θ

= Eπ
θ

P

[
H−1∑
h=0

γh
∇θπθh(Ah|Zh)
πθh(Ah|Zh)

Aπ
θ

h (Zh, Ah)

]
(23)

which sheds light on how to approximate the value function by simpler structures:

19

Corollary 4 (Importance Sampling). For finite horizon, discounted reward POMDP, the following function

L̃(θ; θt) := Vπ
θt
+ Eπ

θt

[
H−1∑
h=0

γh
πθh(Ah|Zh)
πθth (Ah|Zh)

Aπ
θt

h (Zh, Ah)

]

satisfies
(i) L̃(θ; θt)

∣∣
θ=θt

= Vπ
θ ∣∣
θ=θt

(ii) ∇θ L̃(θ; θt)
∣∣
θ=θt

= ∇θVπ
θ ∣∣
θ=θt

which implies that it can be used as a first-order approximator of the value function Vπ
θ

in the neighborhood
of θt:

∀ϵ > 0, ∃δ > 0, s.t. ∀θ : ∥θ − θt∥ ≤ δ,
∣∣∣Vπθ

− L̃(θ; θt)
∣∣∣ ≤ ϵ

This corollary illuminates how Theorem 4 relates with TRPO [43] and PPO [44] algorithms.

B Distributed TD learning for POMDPs

B.1 Proof of Auxiliary Lemmas
To allow for more flexibility, we extend the definition of Bellman error in Eq. (4) to any two stacked parameters:

Definition 12 (Extended Bellman Error). Given two parameters ψ1 and ψ2. Let Q̂i denote the Q-function
estimate constructed from Q̂ih = ⟨ϕh(Z̄h), ψih⟩ for i ∈ {1, 2}. Define

Eπ(ψ1, ψ2) :=Eπ

H−1∑
h=0

γh

(
Q̂1
h(Z̄h)− Q̂2

h(Z̄H)
)2

2

 = (ψ1 − ψ2)
⊤ E

[
H−1∑
h=0

γh ϕh(z̄h)
⊤ϕh(z̄h)

]
(ψ1 − ψ2)

It is straightforward to see that Eπ(ψ,ψ⋆) = Eπ(ψ).
We also need the feature vectors to satisfy several regularity conditions to support our theoretical analysis.

These conditions are standard in the theory of linear function approximation [5, 11, 50]. Without loss of
generality, we require the feature vectors to be normalized 2-norms, so that the norm of the parameters and
the Bellman error defined in Eq. (4)) have the following (crude) upper bounds

∥ψ∥2 ≤
√
Hd , E(ψ) ≤ ∥ψ − ψ⋆∥2 (24)

Readers may refer to Lemma B.2 of [13] or Section 2.1 in [22] for a reference. On the other hand, condition 3
ensure that

∥ψ − ψ⋆∥22 ≤
1

µϕ
E(ψ), ∥ψ1 − ψ2∥22 ≤

1

µϕ
Eπ(ψ1, ψ2) (25)

Comparing Eq. (24) with Eq.(25), we discover the relationship between the potential function and the Bellman
error:

µϕ · U
(
ψ̃r
)
≤ E E

(
ψ̃r
)
≤ U

(
ψ̃r
)

(26)

B.1.1 Proof of Lemma 3

Proof. In Lemma 3, we aim to show that for any constant c ∈ R+:

2 · E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
︸ ︷︷ ︸

Progression Direction

≤ ηrαrK ·

−2(1− γ) E E(ψ̃r)︸ ︷︷ ︸
Bellman error

+
1

c
· E
∥∥∥ψ̃r − ψ⋆∥∥∥2

2︸ ︷︷ ︸
Potential function

+16c ·
∑
m,k

MK
E
∥∥∥ψr,k,m − ψ̃r∥∥∥2

2︸ ︷︷ ︸
Local drift


20

We will heavily rely on the independence relation of successive rollout trajectories. For a precise char-
acterization, we introduce a set of sigma algebras to describe the relationship between several random
variables.

Definition 13. Define the random events occurring before the derivation of ψr,k,mh as

Fr,k,mh = σ
(
ψr,k−1,m, z̄r,k−1,m

h+1

)
= σ

(
ψ̄r, {z̄r,t,mh+1 }

k−1
t=0

)
Fr,k,m :=

H−1⋃
h=0

Fr,k,mh

We further define the following sigma-algebras to characterize the randomness before we update other parame-
ters:

Fr,kh :=

M−1⋃
m=0

Fr,k,mh Fr,k :=

H−1⋃
h=0

Fr,kh Frh :=

K⋃
k=0

Fr,kh Fr :=
H−1⋃
h=0

Frh

To prove Lemma 3, we unroll the update rule to exress the parameters by sample of the semi-gradients,
before we telescope the sample gradients with their expectations and invoke their continuity conditions. First,
we notice that from Algorithm 2,

ψ̃r+1 = (1− ηr) ψ̃r + ηrψ̄
r = ψ̃r − ηrαr ·

∑
m

M

K−1∑
k=0

gh(ψ
r,k,m; z̄r,k,mh+1) (27)

Eq. (27) suggests that the following relation holds for any realization of ψ̄r, ψ̄r+1 and ψr,k,m:

2
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
=− 2 (ηrαr)

H−1∑
h=0

〈
ψ̃rh − ψ⋆h,

1

M

M−1∑
m=0

K−1∑
k=0

gh

(
ψr,k,m; z̄r,k,mh+1

)
− EZ̄r,k,m

h+1
gh

(
ψr,k,m; Z̄r,k,mh+1

)〉

+ 2 (ηrαr)
1

M

M−1∑
m=0

H−1∑
h=0

K−1∑
k=0

〈
ψ̃rh − ψ⋆h,EZ̄r,k,m

h+1
gh

(
ψr,k,m; Z̄r,k,mh+1

)〉
By the towering rule, we see that the telescoped term has zero mean,

E
〈
ψ̃rh − ψ⋆h , gh

(
ψr,k,m; z̄r,k,mh+1

)
− EZ̄r,k,m

h+1
gh

(
ψr,k,m; Z̄r,k,mh+1

)〉
=E

[〈
ψ̃rh − ψ⋆h,E

[
gh

(
ψr,k,m; z̄r,k,mh+1

)
− EZ̄r,k,m

h+1
gh

(
ψr,k,m; Z̄r,k,mh+1

)〉 ∣∣Fr,k,m]] = 0

which implies that the left-hand-side in Lemma 3 equals

2 · E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
=2 (ηrαr) · E

〈
ψ̃r − ψ⋆ , 1

M

M−1∑
m=0

K−1∑
k=0

EZ̄r,k,m
h+1

g
(
ψr,k,m; z̄r,k,mh+1

)〉

=2 (ηrαr) ·
K−1∑
k=0

E
〈
ψ̃r − ψ⋆ , EZ g

(
ψ̃r;Z

)〉
+ 2 (ηrαr) ·

K−1∑
k=0

E

〈
ψ̃r − ψ⋆ , 1

M

M−1∑
m=0

EZ̄r,k,m
h+1

g
(
ψr,k,m; z̄r,k,mh+1

)
− EZ g

(
ψ̃r;Z

)〉
For the first term, Assumption 1 implies that

2 (ηrαr) ·
K−1∑
k=0

E
〈
ψ̃r − ψ⋆ , EZ g

(
ψ̃r;Z

)〉

≤2ηrαrK ·

E
∥∥∥ψ̃r − ψ⋆∥∥∥2

2

2
+

∥∥∥EZg (ψ̃r;Z)∥∥∥2
2

2

 ≤ 2ηrαrK ·

E
∥∥∥ψ̃r − ψ⋆∥∥∥2

2

2
+
G2

2


21

For the second term, Lemma 9 implies

2 (ηrαr) ·
K−1∑
k=0

E

〈
ψ̃r − ψ⋆ , 1

M

M−1∑
m=0

EZ̄r,k,m
h+1

g
(
ψr,k,m; z̄r,k,mh+1

)
− EZ g

(
ψ̃r;Z

)〉

≤2ηrαr
K−1∑
k=0

E


∥∥∥ψ̃r − ψ⋆∥∥∥

2c
+
c

2

∑M−1
m=0

M

∥∥∥EZ̄r,k,m
h+1

g
(
ψr,k,m; z̄r,k,mh+1

)
− EZ g

(
ψ̃r;Z

)∥∥∥2
2


≤2ηrαr

K−1∑
k=0

E


∥∥∥ψ̃ − ψ⋆∥∥∥2

2

2c
+
c

2

∑M−1
m=0

M
16
∥∥∥ψr,k,m − ψ̃r∥∥∥2

2


which results in

2 · E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
︸ ︷︷ ︸

Progression Direction

≤ ηrαrK

(1 + 1

c

)
E
∥∥∥ψ̃r − ψ⋆∥∥∥2

2
+G2 + 16c ·

∑
m,k

MK
E
∥∥∥ψr,k,m − ψ̃r∥∥∥2

2︸ ︷︷ ︸
Local drift



Before we proceed to prove the next lemma (Lemma 4), we need to characterize how the variance in
sample gradients is reduced by sampling independent rollout trajectories from the same policy.

Lemma 8 (Variance Reduction).

E

∥∥∥∥∥ 1

MK

M∑
m=0

K−1∑
k=0

gh(ψ
r,k,m; z̄r,k,mh+1)− Eπ

Z̄r,k,m
h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)

∥∥∥∥∥
2

2

≤ 1

MK
σ2
g

This result is a smooth generalization of Lemma 7 in [53] and we omit the proof for brevity.
We also need to describe the continuity of the semi-gradients, which is summarized in the following lemma.

Lemma 9 (Lipchitzness of the Expected Semi-gradient). The ensemble mean of the stacked semi-gradient
has Lipschitz constant 4:

∥∥∥EZ̄h+1
g(ψ1; Z̄h+1)− EZ̄h+1

g(ψ2; Z̄h+1)
∥∥∥
2
≤ 4

∥∥ψ1 − ψ2
∥∥
2

Proof. Under linear representation, the ensemble mean of the semi-gradient at each step takes the following
form:

EZ̄h+1
gh(ψ

1; Z̄h+1)

=− γhE
[
ϕh(Z̄H)(r(Z̄H) + γϕh+1(Z̄h+1)

⊤ψ1
h+1 − ϕh(Z̄H)⊤ψ1

h)
]

=− γhE
[
ϕh(Z̄H)r(Z̄H)

]
− γh+1E

[
ϕh(Z̄H)ϕh+1(Z̄h+1)

]⊤
ψ1
h+1 − γhEϕh(Z̄H)ϕh(Z̄H)⊤ψ1

h

Triangle inequality and Cauchy-Schwartz inequality suggest that∥∥∥EZ̄h+1
gh(ψ

1; Z̄h+1)− EZ̄h+1
gh(ψ

2; Z̄h+1)
∥∥∥
2

=
∥∥∥−γh+1E

[
ϕh(Z̄H)ϕh+1(Z̄h+1)

]⊤ (
ψ1
h+1 − ψ2

h+1

)
− γhEϕh(Z̄H)ϕh(Z̄H)⊤

(
ψ1
h − ψ2

h

)∥∥∥
2

=γh+1
∥∥∥E [ϕh(Z̄H)ϕh+1(Z̄h+1)

]⊤ (
ψ1
h+1 − ψ2

h+1

)∥∥∥
2
+ γh

∥∥Eϕh(Z̄H)ϕh(Z̄H)⊤
(
ψ1
h − ψ2

h

)∥∥
2

=γh+1
∥∥ψ1

h+1 − ψ2
h+1

∥∥
2
+ γh

∥∥ψ1
h − ψ2

h

∥∥
2

which implies∥∥∥EZ̄h+1
gh(ψ

1; Z̄h+1)− EZ̄h+1
gh(ψ

2; Z̄h+1)
∥∥∥2
2
≤ 2γ2h+2

∥∥ψ1
h+1 − ψ2

h+1

∥∥2
2
+ 2γ2h

∥∥ψ1
h − ψ2

h

∥∥2
2

22

Stacking semi-gradients according to Eq. (6), we conclude

∥∥∥EZ̄H
g(ψ1; Z̄H)− EZ̄h+1

g(ψ2; Z̄h+1)
∥∥∥2
2
=

H−1∑
h=0

∥∥∥EZ̄h+1
gh(ψ

1; Z̄h+1)− EZ̄h+1
gh(ψ

2; Z̄h+1)
∥∥∥2
2

≤
H−1∑
h=0

2γ2h+2
∥∥ψ1

h+1 − ψ2
h+1

∥∥2
2
+ 2γ2h

∥∥ψ1
h − ψ2

h

∥∥2
2
≤ 4

H−1∑
h=0

∥∥ψ1
h − ψ2

h

∥∥2
2
= 4

∥∥ψ1 − ψ2
∥∥2
2

which is what we desired.

Building upon Lemma 8 and 9, we are ready to show Lemma 4.

B.1.2 Proof of Lemma 4

In Lemma 4 we claim that

E
∥∥∥ψ̃r+1 − ψ̃r

∥∥∥2
2︸ ︷︷ ︸

Progression Distance

≤ (ηrαrK)2 ·

4 ∥∥∥EπZ̄g (ψ̃r; Z̄)∥∥∥22 + 64

∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

+2
Hσ2

g

MK︸ ︷︷ ︸
Variance


Proof. Similar to the proofs in Appendix B.1.1, the update rule in Eq. (27) and Young’s inequality suggests
that the progression distance decomposes into two terms:

E
∥∥∥ψ̃r+1 − ψ̃r

∥∥∥2
2
=(ηrαr)

2 ·
H−1∑
h=0

E

∥∥∥∥∥ 1

M

M∑
m=0

K−1∑
k=0

gh(ψ
r,k,m; z̄r,k,mh+1)

∥∥∥∥∥
2

2

≤ 2 (ηrαr)
2
H−1∑
h=0

E

∥∥∥∥∥ 1

M

M∑
m=0

K−1∑
k=0

gh(ψ
r,k,m; z̄r,k,mh+1)− Eπ

Z̄r,k,m
h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Variance

+ 2 (ηrαr)
2
H−1∑
h=0

E

∥∥∥∥∥ 1

M

M∑
m=0

K−1∑
k=0

Eπ
Z̄r,k,m

h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Bias

(28)

The first term is associated with the noise in the sampling process, while the second term is related to the
local drift defined in 11 and the bias in the semi-gradient.

Lemma 8 indicates that the variance term is governed by the following bound

Variance ≤ 2 (ηrαr)
2
H−1∑
h=0

Kσ2
g

M
= 2(ηrαr)2K

Hσ2
g

M
(29)

The bias term is related to the Bellman error. Specifically, Jensen’s inequality suggests that

H−1∑
h=0

E

∥∥∥∥∥ 1

M

M∑
m=0

K−1∑
k=0

Eπ
Z̄r,k,m

h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)

∥∥∥∥∥
2

2

≤
H−1∑
h=0

K2 ·
∑
m,k

MK
E

[
E

[∥∥∥∥EπZ̄r,k,m
h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)− EπZ̄ gh(ψ̃

r; Z̄) + EπZ̄ gh(ψ̃
r; Z̄)

∥∥∥∥2
2

∣∣∣∣Fr,k,m
]]

23

With a telescoping trick, we observe that

H−1∑
h=0

E

∥∥∥∥∥ 1

M

M∑
m=0

K−1∑
k=0

Eπ
Z̄r,k,m

h+1

gh(ψ
r,k,m; Z̄r,k,mh+1)

∥∥∥∥∥
2

2

≤2K2 ·
∑
m,k

MK

(
E

[
E

[∥∥∥∥EπZ̄r,k,m
h+1

g(ψr,k,m; Z̄r,k,mh+1)− EπZ̄ g(ψ̃r; Z̄)

∥∥∥∥2
2

] ∣∣∣∣Fr,k,m
]
+

H−1∑
h=0

∥∥∥Eπgh(ψ̃r; Z̄)∥∥∥2
2

)

≤32K2 ·
∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
+ 2K2

H−1∑
h=0

∥∥∥Eπgh(ψ̃r; Z̄)∥∥∥2
2

(30)

where the first step is by Young’s inequality (Fact 2) and the second is due to the Lipchitzness of the average
semi-gradients (Lemma 9). The proof is completed after we bring Eq. (30), (29) to Eq. (28).

In what follows, we will show how the upper bound on the local-drift term scales with the gradient
variance and the learning rate (Lemma 5). As a preparation work, we need to relate the semi-gradients with
the Bellman error.

Lemma 10 (First-order Relation for Extended Bellman Error).

E
〈
ψ1 − ψ2 , EZ̄

[
g(ψ1; Z̄)

]
− EZ̄

[
g(ψ2; Z̄)

]〉
≤ −(1− γ)E E(ψ1;ψ2)

Proof.

gh(ψ
1; z̄) =γhϕh

(
r + γϕ⊤h+1ψ

1
h+1 − ψ⊤

h ψ
1
h

)
gh(ψ

2; z̄) = γhϕh
(
r + γϕ⊤h+1ψ

2
h+1 − ψ⊤

h ψ
2
h

)
So we have

LHS =E
H−1∑
h=0

⟨ψ1
h − ψ2

h, gh(ψ1)− gh(ψ2)⟩ = −E
H−1∑
h=0

⟨ψ1
h − ψ2

h,−γhϕh(γϕ⊤h+1(ψ
1
h+1 − ψ2

h+1))− ϕ⊤h (ψ1
h − ψ2

h)⟩

=− E
H−1∑
h=0

γh+1⟨ϕh, ψ1
h − ψ2

h⟩ · ⟨ϕh+1, ψ
1
h+1 − ψ2

h+1⟩+ γh⟨ϕh, ψ1
h − ψ2

h⟩

=E− γ
H−1∑
h=0

γhuhuh+1 + 2E (ψ1, ψ2) ≤ γE
H−1∑
h=0

γh
(
u2h
2γ

+
γu2h
2

)
− 2E (ψ1, ψ2)

=− E
(
ψ1, ψ2

)
+ γ(E

(
ψ1, ψ2

)
− u20

2
) + 2E (ψ1, ψ2) ≤ −(1− γ)E (ψ1, ψ2) = RHS

We remark that we write ϕt(z̄t)⊤(ψkt − ψ⋆) as ut for brevity.

Now we are ready to prove Lemma 5.

B.1.3 Proof of Lemma 5

We would like to show that∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

≤ (αr)2 · Γ(K; νϕ) ·

(
Hσ2

g

K
+ 2G2

)

where

Γ(K; νϕ) := e · 1− (1 + νϕK)e−νϕK

νϕ2
(31)

Γ(K; νϕ) approaches eK2

2 when γ = 1 or µϕ = 0, while is dominated by e
µϕ

2(1−γ)2 when 0 < αr <
µϕ(1−γ)

16 .
This result directly implies that,

24

• When µϕ ̸= 0 and γ ̸= 1 and the learning rate satisfies αr < µϕ(1−γ)
16 ,∑

m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

≤ e · α2
r

(1− γ)2µϕ2

(
Hσ2

g

K
+ 2G2

)

• When µϕ = 0 or γ = 1 and the learning rate satisfies αr < µϕ(1−γ)
16 ,∑

m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

≤ e · (αr)2K2

2

(
Hσ2

g

K
+ 2G2

)

which is the cornerstone of Theorem 1.

Proof. The proof is a stronger version of proof of Lemma 9 in [53]. We express the parameter ψ in terms
of the sampled semi-gradients, then we use a telescoping trick to replace the sampled gradients with their
expected value.

E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

=
∑
h

E
[∥∥∥ψr,k−1,m

h − ψ̃rh + ψr,k,mh − ψr,k−1,m
h

∥∥∥2
2

]
=
∑
h

E
[∥∥∥ψr,k−1,m

h − ψ̃rh + αrgh(ψ
r,k−1,m; z̄r,k−1,m

h+1)
∥∥∥2
2

]
=
∑
h

E
[∥∥∥ψr,k−1,m

h − ψ̃rh + αrEZ̄r,k−1,m
h+1

gh(ψ
r,k−1,m; z̄r,k−1,m

h+1)
∥∥∥2
2

]
+ (αr)2 · E

[∥∥∥gh(ψr,k−1,m; z̄r,k−1,m
h+1)− EZ̄r,k−1,m

h+1
gh(ψ

r,k−1,m; z̄r,k−1,m
h+1)

∥∥∥2
2

]
≤
∑
h

E
[∥∥∥ψr,k−1,m

h − ψ̃rh + αrEZ̄r,k,m
h+1

gh(ψ
r,k−1,m; z̄r,k,mh+1)

∥∥∥2
2

]
+ (αr)2 ·Hσ2

g

The third step is due to the cross term being zero if we condition on Fr,k−1,m. We proceed by telescope
again to replace the gradients at each parameter ψr,k,m with that at the last synchronization ψ̃r.

E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

≤(αr)2 ·Hσ2
g + (αr)2

(
1 +

1

ξ

)∥∥∥EZh+1
g(ψ̃r;Zh+1)

∥∥∥2
2

+ (1 + ξ)
∑
h

E

∥∥ψr,k−1,m
h − ψ̃rh︸ ︷︷ ︸

I

+αrEZ̄r,k,m
h+1

gh(ψ
r,k−1,m; z̄r,k,mh+1)− αrEZh+1

gh(ψ̃
r;Zh+1)︸ ︷︷ ︸

II

∥∥22


This relation holds for any positive ξ due to Young’s inequality (Fact 2) and later we will select an appropriate
value of ξ that balances the terms when we unroll k to 0. Next, we associate term II with term I by the
4-Lipschitzness of the semi-gradient stated in Lemma 9:∥∥∥EZ̄h+1

g(ψ1; Z̄h+1)− EZ̄h+1
g(ψ2; Z̄h+1)

∥∥∥
2
≤ 4

∥∥ψ1 − ψ2
∥∥
2

25

The cross term between I and II can be derived from Eq. (25) and Lemma 10.

E
〈
ψ1 − ψ2 , EZ̄

[
g(ψ1; Z̄)

]
− EZ̄

[
g(ψ2; Z̄)

]〉
≤ −(1− γ)E E(ψ1;ψ2) ≤ −(1− γ)µϕ · E

∥∥ψ1 − ψ2
∥∥2
2

provided that the feature covariate matrix is positive-definite. By rearranging terms and then taking the
ensemble mean, we see that the drift term subjects to a linear dynamic equation:

drift(k; r) ≤A · drift(k; r) +B (32)

where
drift(k; r) :=

∑
m

M
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
A :=(1 + ξ)

(
1 + 16(αr)2 − 2αr(1− γ)µϕ

)
B :=(αr)2 ·

(
Hσ2

g +

(
1 +

1

ζ

)
G2

) (33)

The synchronization rule (line 16 in Algorithm 2) suggests that drift(0; r) = 0, which then implies

drift(k; r) ≤ Akdrift(0; r) +B ·
k∑
t=0

At = Ak · 0 +B ·
k∑
t=0

At ≤ kAk ·B

It is also convenient to abbreviate the local drift as drift(r). and the definitions of the drift terms naturally
suggests that

drift(r) =

∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

=
1

K

K−1∑
k=0

drift(k; r)︸ ︷︷ ︸
Ensemble drift

< B · 1
K

K−1∑
k=0

k ·Ak (34)

We will compute the right-hand-side of Eq. (34) and then complete the proofs.
First we would like to simplify the scaling term A in Eq.(32) and sure that unrolling k will not cause any

terms to diverge when K is large. Pick ξ = 1
K and αr <

µϕ(1−γ)
16 , we can guarantee that (1 + ξ)

K
< e and

that
(
1 + 16(αr)2 − 2αr(1− γ)µϕ

)
≤ 1− (1− γ)µϕαr ≤ e−(1−γ)µϕα

r

Next we connect the summation to a
Riemannian integral and provide sharp bounds for all K ∈ Z+:

drift(r) <eB · 1
K

∫ K

0

xe−axdx

∣∣∣∣
a=(1−γ)µϕ

= eB · 1− (1 + aK) · e−aK

a2K

∣∣∣∣
a=(1−γ)µϕ

=Γ(γ, µϕ,K) · B
K
≤

{
eB

(1−γ)2µϕ
2K a > 0

eBK
2 a→ 0+

For reader’s reference, we plot the summation with its upper bounds evaluated at µϕ(1− γ) = 0.07: which

Figure 3: Upper bounds on drift(r) across different K. Curves evaluated at B = 1, µϕ(1− γ) = 0.007

clearly shows that the bound eB
(1−γ)2µϕ

2K is approximately effective when K is large, while eBK
2 dominates

the summation when K or µϕ(1− γ) is small.
We complete the proof by substituting B with its definition in Eq. (33), where we select ξ = 1

K . We will
also need to use the simple fact that

(
1 + 1

K

)
< 2.

26

B.1.4 Proof of Lemma 6

Proof. First we invoke a standard result in federated RL that links the gradient-dependent terms in Lemma 4
and Lemma 3. Readers may refer to Eq.(a) in the proofs of Proposition 4 and the second in equality for
Lemma 10 in [53] for details. With Definition 1 and Lemma 9, we have

E
〈
ψ̃r − ψ⋆,Ezg

(
ψ̃r;Z

)〉
+ ηrαrK · 2

∥∥∥EπZ̄ g
(
ψ̃r; Z̄

)∥∥∥2
2
≤ −µϕ(1− γ)U (ψr) + 16E E

(
ψ̃r
)

Taking Lemma 3 and Lemma 4 to Eq. (19),

U(ψ̃r+1) =U(ψ̃r) + 2E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
︸ ︷︷ ︸

Progression Direction

+ E
∥∥∥ψ̃r+1 − ψ̃r

∥∥∥2
2︸ ︷︷ ︸

Progression Distance

≤
(
1− ηrαrK

c

)
U(ψ̃r) + ηrαrK ·

[(
−2(1− γ)µϕ +

2

c

)
· U (ψr) + 64ηrαrKEE

(
ψ̃r
)]

+ ηrαrK (c+ 4ηrαrK) · 16
∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

+2(ηrαrK)2
Hσ2

g

MK

(35)

Next, we further simplify the two terms in the middle, at the cost of several restrictions on the learning rates.
First we would like to simplify the second term. With Eq. (26), we discover that as long as the composite
learning rates satisfy ηrαrK ≤ µϕ(1−γ)

128 , we are able to do suppress the Bellman error with the potential
function, under the setting c = 2

µϕ(1−γ) :

−µϕ(1− γ) · U (ψr) + 64 · ηrαrKEE
(
ψ̃r
)
≤ −µϕ(1− γ)

2
EE
(
ψ̃r
)

(36)

Under the requirement of αr <
µϕ(1−γ)

16 , Lemma 5) suggest that the local drift term is dominated by

16

∑
m,k

MK
E
[∥∥∥ψr,k,m − ψ̃r∥∥∥2

2

]
︸ ︷︷ ︸

Local drift

≤ 16Γ(K; νϕ)

(
Hσ2

g

K
+ 2G2

)
· α2

r

where Γ(K; νϕ) is defined in Eq. (31). We decrease the local learning rate with a factor of H to offset the
non-stationarity of POMDPs.
With these two simplifications, we arrive at

U(ψ̃r+1) =U(ψ̃r) + 2E
〈
ψ̃r − ψ⋆ , ψ̃r+1 − ψ̃r

〉
︸ ︷︷ ︸

Progression Direction

+ E
∥∥∥ψ̃r+1 − ψ̃r

∥∥∥2
2︸ ︷︷ ︸

Progression Distance

≤
(
1− ηrαrK

2
νϕ

)
U(ψ̃r)− ηrαrK ·

νϕ
2H

E E
(
ψ̃r
)

+ (ηrαrK)
2

(
2

αrKνϕ
+ 4

)
· 16Γ(K; νϕ)

(
Hσ2

g

K
+ 2G2

)
· α2

r

+ 2(ηrαrK)2
Hσ2

g

MK

(37)

under the condition that c = 2
µϕ(1−γ) , νϕ = µϕ(1− γ), αr ≤ µϕ(1−γ)

16 and ηrαrK ≤ µϕ(1−γ)
128 . If further require

that αr ≤ µϕ(1−γ)
16RK , then we could obtain

(
2

αrKνϕ
+ 4
)
α2
r ≤ 9

64RK2 and arrive at

U
(
ψ̃r+1

)
≤
(
1− ιr

2
νϕ

)
U
(
ψ̃r
)
− ιr

2
νϕE E

(
ψ̃r
)
+

9

4
Γ(K; νϕ)

(
Hσ2

g

RK3
+

2G2

RK2

)
ι2r +

2Hσ2
g

MK
ι2r

27

B.2 Proof of Theorem 1
Proof. To further abbreviate expressions in Lemma 6, in what follows we write ηrαrK as ιr,

νϕ
2 E E(ψ̃r)

as er, U(ψ̃r) as ur and A as 9
4Γ(K; νϕ)

(
Hσ2

g

RK3 + 2G2

RK2

)
+

2Hσ2
g

MK . Under the constraints that αr ≤ µϕ(1−γ)
16RK ,

ηrαrK = ιr ≤ µϕ(1−γ)
128 , we obtain

er ≤
(

1

ιr
− νϕ

2

)
ur −

1

ιr
ur+1 +Aιr (38)

Now we set the stochastic averaging weight as wr = (r+2)2, total weight as W =
∑R
r=0 wr ≥ R3/3, composite

learning rate as ιr = a
µϕ(1−γ)(r+a) where a is any positive constant larger than 9

2 . Then when the total rounds
of communication is sufficiently large such ∀R ≥ R0, we ensure that ιr ≤ νϕ

128 , the weighted average of the
last error terms is controlled by

1

W

R∑
r=R0

wrer ≤
3νϕ
R3

(
1− 1

a

)
u0 +

3a

νϕ

(
1

2R
+ (a− 2)2

ln(1 + R+1
a)

R3

)
A

=Õ

(
νϕ
R3

∥∥ψ̄0 − ψ⋆
∥∥2
2
+

Hσ2
g

νϕMKR
+ Γ(K; νϕ)

Hσ2
g

νϕR2K3
+ Γ(K; νϕ)

G2

νϕR2K2

)

≤Õ

(
νϕHd

R3
+

Hσ2
g

νϕMKR
+ Γ(K; νϕ)

Hσ2
g

νϕR2K3
+ Γ(K; νϕ)

G2

νϕR2K2

)

The proofs of the first inequality is similar to Lemma 3.4 in [46] and we omit it for brevity. The last display
is due to Eq. (24). By the convexity of the Bellman error, we conclude:

E E
(
ψ̂R
)
≤ Õ

(
Hd

R3
+

1

νϕ2

[(
1

MT
+

Γ(K; νϕ)

KT 2

)
Hσ2

g +
Γ(K; νϕ)

T 2
G2

])
(39)

where we write the total number of gradient steps or sample trajectories taken by each parallel machine
as T = RK. We remind the readers that the error bound holds true when αr ≤ µϕ(1−γ)

16RK , ηr = ιr
αrK

,
ιr =

a
µϕ(1−γ)(r+a) , wr = (r + 2)2 and we take the weighted average after r ≥ 128a

νϕ2 . We complete the proof by

the fact that Γ(K; νϕ) ≤ O
(
min

{
1

νϕ2KT 2 ,K
2
})

and T = KR.

B.3 Proof of Lemma 1
In what follows we design a parallel training setup to make the error bound in Theorem 1 be dominated

by the varince reduction term, so that we will benefit from parallelism via a linear speedup in sample

complexity. Simple calculation reveals that Eq. (39) reduces to E E
(
ψ̂R
)
≤ Õ

(1
νϕ

2Hσ
2
g+Hd

MT

)
under the

following conditions

Definition 14 (Linear Speedup Condition).

K ≤ T 2/3

M1/3
,

Γ(K; νϕ)

K
<

T

M
, and Γ(K; νϕ) <

Hσ2
gT

G2M
(40)

The sample complexity to obtain an ϵ-accurate Q-function estimate is Neval ≤ Õ
(

1
Mϵ

(
Hσ2

g

νϕ2 +HdQ

))
trajectories, or Õ

(
H
Mϵ

(
Hσ2

g

νϕ2 +HdQ

))
observation-action tuples.

To satisfy the constraints in Eq. (40), we can select the communication interval K according to the
ill-condition number νϕ, using the analysis results in Section B.1.3:

28

• When νϕ is small, meaning that the feature matrix is ill-defined, we need to carefully limit the number
of local steps to suppress local drift. We recommend choosing local steps

K ≤ min

{
T 2/3

M1/3
,
2

e

T

M
,

√
2

e
·
Hσ2

g

G
· T
M
,

}
(41)

so that the constraints in Eq. (40) is met using the fact that Γ(K; νϕ) ≤ eK2

2 . Moreover, in this scenario
the error bound in Eq. (39) is controlled via

E E
(
ψ̂R
)
≤ Õ

(
Hd2

MT
+

1

νϕ2

[(
1

MT
+

1

RT

)
Hσ2

g +
1

R2
G2

])
≤ Õ

(
Hd

MT
+

Hσ2
g

νϕ2MT

)
(42)

and the communication complexity is

R =
T

K
≥ max

{
(MT)1/3 ,

e

2
M ,

√
e

2

G

Hσ2
g

MT

}
(43)

• When νϕ is large, it implies that the feature matrix is well-defined, we need to ensure that the total and
local compuation budgets are large enough to keep the last two terms in Eq. (39) quickly converges.
When that happends, the variance reduction term will stands out of our bound, which exhibits the
benefits of parallelism by a linear speedup. To this end, we discover that a) K ≤ T 2/3

M1/3 implies that
1
R3 ≤ 1

MT , b) K ≥ 1
νϕ2

M
T implies that Γ(K;νϕ)

KT 2 ≤ e
νϕ2KT 2 ≲ 1

MT and c) T
M ≥

1
νϕ2

G2

Hσ2
g

impliese that
Γ(K;νϕ)
T 2 G2 ≤ e

νϕ2T 2G
2 ≲

Hσ2
g

MT . When a) to c) are simultaneously satisfied, the sample complexity will

scale with 1
MT . One possible scenarios is to pick K = T 2/3

M1/3 when T
M ≥

1
νϕ2

G2

Hσ2
g
. This choice directly

meets the requirements of a) and c), while also ensures b) T
M ≥

1
νϕ2K since second-moment is larger

than the variance. Under this setup,

E E
(
ψ̂R
)
≤ Õ

(
Hd2

MT
+

1

νϕ2

[(
1

MT
+

1

νϕ2KT 2

)
Hσ2

g +
1

νϕ2T 2
G2

])
≤ Õ

(
Hσ2

g +Hd

νϕ2MT

)
(44)

where the number of communications R = T
K = (MT)1/3 improves Eq. (43), at the cost of a slightly

increase Bellman error.

C Distributed NPG for POMDPs

C.1 Proof of Auxiliary Lemmas
Corollary 5 (β-smoothness). Assumption 5 implies

(θt − θt+1)
⊤∇θ lnπθt+1

h (ah|zh)−
β

2
∥θt − θt+1∥22 ≤ lnπθth (ah|zh)− lnπ

θt+1

h (ah|zh) (45)

The exact value of β is relevant to the policy class.

C.1.1 Proof of Lemma 1

We will show that

Vπ
⋆

− E
1

R

R−1∑
r=0

Vπ
θr ≤ HW

√
2βD

R
+
√
κH

√√√√ 1

R

R−1∑
r=0

E LA (ωr; θr, πθr)

29

Here, LA is the compatible function approximation error, defined in Eq. (10). κ is a regularity constant
introduced in Eq. (9). The following proof is a smooth generalization of NPG regret bounds to POMDPs,
which is inspired by [2, 9]. Our proof adopts a different definition for κ compared with [9], and our policy
class is no longer limited to softmax parameterization like [9], or Markov policies like [2].

Proof. We would like to introduce some functions for the convenience of our analysis. First, let us define

ϵ⋆(ωr; θr) := Eπ
⋆
H−1∑
h=0

γh
(
Aπ

θr

h

(
Z̄h
)
− ω⊤

r ∇θ lnπ
θr
h (Ah|Zh)

)
(46)

We also define the following potential function under assumptions 5 and 9,

U(πθr ;π⋆) := Eπ
⋆
H−1∑
h=0

γhDKL (π
⋆
h (· | Zh) ∥πrh (· | Zh)) < +∞ (47)

which will be used as a tool to link the functional suboptimality Vπ
⋆ − Vπ

θr with the compatible function
approximation error. We will also invoke Cauchy-Schwartz inequality for vectors

∑
i aibi ≤

√∑
i a

2
i ·
√∑

i b
2
i

and random variables E|XY | ≤
√
EX2

√
EY 2.

Conditioned on all the parameters θr, ωr, we observe that

U
(
πθr ;π⋆

)
− U

(
πθr+1 ;π⋆

)
=Eπ

⋆
H−1∑
h=0

γh
[
DKL

(
π⋆h (· | Zh) ∥π

θr
h (· | Zh)

)
−DKL

(
π⋆h (· | Zh) ∥π

θr+1

h (· | Zh)
)]

=Eπ
⋆
H−1∑
h=0

γh
∫
A

dAh · π⋆h(Ah|Zh)
(
lnπ

θr+1

h (Ah|Zh)− lnπθrh (Ah|Zh)
)

≥Eπ
⋆
H−1∑
h=0

γh
(
(θr+1 − θr)∇θ lnπθrh (Ah|Zh)−

β

2
∥θr − θr+1∥22

)
//β-smoothness, Corollary 5

(48)

=ηr · Eπ
⋆
H−1∑
h=0

γh
(
ω⊤
r ∇θ lnπ

θr
h (Ah|Zh)− Aπ

θr

h

(
Z̄h
))

+ ηr · Eπ
⋆
H−1∑
h=0

γhAπ
θr

h

(
Z̄h
)

− Eπ
⋆
H−1∑
h=0

γh
β

2
η2r ∥ωr∥

2
2 //Telescope the advantage function and invoke θr+1 = θr + ηrωr

=− ηr · ϵ⋆(ωr; θr) + ηr

(
Vπ

⋆

− Vπ
θr
)
− βW 2H

2
η2r //Performance difference lemma 7

(49)

Dividing both sides of Eq. (49) with ηr, we obtain the following fact when conditioned on θr and ωr:

Vπ
⋆

− Vπ
θr ≤ U(πθr ;π⋆)− U(πθr+1 ;π⋆)

ηr
+ ϵ⋆(ωr; θr) +

βW 2H

2
ηr (50)

Fix ηr ≡ η for all r. Conditioned on all the parameters θr, ωr returned by SGD, we take the average over all

30

r and obtain

1

R

R−1∑
r=0

Vπ
⋆

− Vπ
θr ≤ 1

ηR

R−1∑
r=0

U(πθr ;π⋆)− U(πθr+1 ;π⋆) +
1

R

R−1∑
r=0

ϵ⋆(ω; θr) +
βW 2H

2
η

=
Eπ⋆ ∑H−1

h=0 γ
h
[
DKL

(
π⋆h (· | Zh) ∥π0

h (· | Zh)
)
−DKL

(
π⋆h (· | Zh) ∥πRh (· | Zh)

)]
ηR

+
1

R

R∑
r=1

ϵ⋆(ω; θr) +
βW 2H

2
η //U is non-negtive

≤HD
ηR

+
βW 2H

2
η +

1

R

R−1∑
r=0

ϵ⋆(ωr; θr) // Definition 4.

≤HW
√

2βD

R
+

1

R

R−1∑
r=0

ϵ⋆(ωr; θr) //Optimize ηr over R to get η =

√
2D/β

W

1√
R

(51)

Next, we connect the term ϵ⋆(ω; θr) with the compatible function approximation error introduced in Eq. (10):

ϵ⋆(ωr; θr)

:=Eπ
⋆
H−1∑
h=0

γh
(
Aπ

θr

h

(
Z̄h
)
− ωr⊤∇θ lnπθrh (Ah | Zh)

)
//Definition in Eq. (46)

=Eπ
θr

H−1∑
h=0

γ
h
2
dPπ⋆

dPπθr
γ

h
2

(
Aπ

θr

h

(
Z̄h
)
− ωr⊤∇θ lnπθrh (Ah | Zh)

)

≤Eπ
θr

√√√√H−1∑
h=0

γh
(
dPπ⋆

dPπθr

)2

√√√√H−1∑
h=0

γh
(
Aπ

θr

h

(
Z̄h
)
− ωr⊤∇θ lnπθrh (Ah | Zh)

)2
//Cauchy-Schwartz for vectors

≤

√√√√Eπθr

H−1∑
h=0

γh
(
dPπ⋆

dPπθr

)2

√√√√Eπθr

H−1∑
h=0

γh
(
Aπ

θr

h

(
Z̄h
)
− ωr⊤∇θ lnπθrh (Ah | Zh)

)2
//Cauchy-Schwartz for random variables

=

√√√√Eπ⋆ dPπ
⋆

dPπθr

H−1∑
h=0

γh

√√√√Eπθr

H−1∑
h=0

γh
(
Aπ

θr

h

(
Z̄h
)
− ωr⊤∇θ lnπθrh (Ah | Zh)

)2
≤
√
κrH ·

√
LA (ωr; θr, πθr) //Definition of κr in Assumption (9) and LA in Eq. (10).

(52)

Taking the expectation w.r.t. θ0:R−1 and ω0:R−1, we obtain

1

R

R−1∑
r=0

E ϵ⋆(ωr; θr)

≤
∑R−1
r=0

R

√
HE κr

√
Eωr,θrLA(ωr; θr, πθr) //Cauchy-Schwartz for random variables

≤
√
H

√∑R−1
r=0

R
E κr ·

√∑R−1
r=0

R
E LA (ωr; θr, πθr) //Cauchy-Schwartz for vectors

=
√
κH ·

√∑R−1
r=0

R
E LA (ωr; θr, πθr) //Definition of κ in Eq. (9)

(53)

Bring Eq. (53) to Eq. (51), we conclude the proof.

31

C.1.2 Discussion on κ

The authors of [9] introduced a similar concept of κ. In this work, we replace their definition with a finer
characterization by investigating how the regularity constant evolves during policy improvement. Recall

that we defined κr by κr = Eπ⋆ dPπ⋆

dPπθr
and referred to κ as κ :=

√
1
R

∑R
r=1 E κr. By expanding the trajectory

probability along the horizon,

Pπ
θ

(Z̄H) =ρ(S0)O0(O0|S0)π
θ
0(A0|O0)T1(S1|S0, A0)O1(O1|S1)π

θ
1(A1|Z1) . . .

TH−1(SH−1|SH−2, AH−2)OH−1(OH−1|SH−1)π
θ
H−1(AH−1|ZH−1)

we relate the sample-path distribution Pπθ

with the policy distribution: κr = Eπ⋆ ∏H−1
t=0

π⋆
t (At|Zt)

πθr
t (At|Zt)

=

Eπ⋆

exp
∑H−1
t=0 lnπ⋆t (At|Zt)− lnπθrt (At|Zt). Using the β-smoothness of the policy, we can derive an upper

bound on κr, even in continuous action spaces.

κr ≤Eπ
⋆

exp

H−1∑
t=0

β ∥θ⋆ − θr∥2 = expHβ ∥θ⋆ − θr∥2 κ ≤ E

√√√√ 1

R

R∑
r=1

expHβ ∥θ⋆ − θr∥2 (54)

Despite not considering the policy’s structural properties, this bound still provides certain intuition. Notably,
while this upper bound depends on H, it is unaffected by the sizes of the state and observation spaces,
highlighting the algorithm’s strong scalability for large-scale POMDP problems. We also notice that, as
Natural Policy Gradient updates approach the optimal solution, κr converges to 1. However, suppressing κr
below a small constant becomes more challenging as temporal information increases (H is large) or the policy
class loses smoothness (β large).

Moreover, κr represents the exponent of the second-order Rényi divergence between optimal and learned
sample path probabilities. By linking κr with f -divergences [3], we can establish upper and lower bounds
on κ related to the geometry of the probability simplex. The following result is even independent of policy
parameterization and applicable to potentially continuous action spaces.

exp

H−1∑
t=0

Eπ
⋆

DKL

(
π⋆t (·|Zt)||π

θr
t (·|Zt)

)
≤ κr ≤1 + χ2

(
Pπ

⋆

||Pπ
θr
)

≤1 +

∥∥∥∥∥
H−1∏
t=0

πθ
⋆

(At|Zt)
πθr (At|Zt)

∥∥∥∥∥
∞

√√√√2

H−1∑
t=0

Eπ⋆DKL

(
π⋆t (·|Zt)||π

θr
t (·|Zt)

)
(55)

Here, χ2(·||·) is the Chi-square divergence between two probability measures. The proof is a simple application
of basic information-theoretic inequalities detailed in [15, 16], and we omit it for brevity. We observe that as
the KL-divergence between the policies approaches zero, κr converges to 1. It is promising that applying
regularization for POMDPs based on information theory can help reduce the upper bound on κr, which we
leave for future work.

C.1.3 Proof of Lemma 2

We will show a stronger version of the Lemma: LA(ω; θ, π
θ) ≤ LQ(ω; θ, π

θ) ≤ 2 · ϵstat(ω; θ)+2 · ϵapprox(θ)+
4 · Eπθ

(
ψ̂
)
.

Proof. Under softmax parameterization, the policy takes the form of πθh(ah|zh) :=
exp fθ(zh,ah;h)∑

ah∈A exp fθ(zh,ah;h)

Consequently, the log-likelihood of the policy distribution is

log πθh(ah|zh) = fθ(zh, ah;h)− log
∑
ah∈A

exp fθ(zh, ah;h)

Taking the derivative to both sides, the score function of softmax policies is

∇θ log πθh(ah|zh) = ∇θfθ(zh, ah;h)− Eah∼πθ
h(·|zh)

∇θfθ(zh, ah;h) (56)

32

which can be viewed as the centered value of the un-normalized output of the neural network fθ. Interestingly,
this structure mirrors the relationship between the advantage function and the action-value function

Aπ
θr

h (Z̄h) = Qπ
θr

h (Z̄h)− EAh∼πθ(·|Zh)Q
πθr

h (Zh, Ah) a.s. (57)

With these facts, we immediately conclude that the compatible function approximation error LA(ωr; θr;π
θr)

defined in Eq. (10) is dominated by the Q-compatible function approximation error LQ(ωr; θr;π
θr) introduced

in Eq. (11), under neural softmax parameterization.

LA(ωr; θr;π
θr)

=Eπ
θr

P

H−1∑
h=0

γh
(
Aπ

θr

h (Z̄h)− ω⊤
r ∇θ lnπ

θr
h (Ah | Zh)

)2
//Definition in Eq. (10)

=Eπ
θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− EAh∼πθ(·|Zh)Q
πθr

h (Zh, Ah)

−ω⊤
r ∇θfθr (Zh, Ah;h) + ω⊤

r EAh∼πθ
h(·|Zh)

∇θfθr (Zh, Ah;h)
)2

//Eq. (56) and Eq. (57)

=Eπ
θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)− EAh∼πθ(·|Zh)

(
Qπ

θr

h (Zh, Ah)− ω⊤
r ∇θfθr (Zh, Ah;h)

))2
=Eπ

θr

P

H−1∑
h=0

γhVarAh∼πθr
h (·|Zh)

[
Qπ

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

]
≤Eπ

θr

P

H−1∑
h=0

γhEAh∼πθr
h (·|Zh)

(
Qπ

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

)2
//Variance is less than second moment.

=Eπ
θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

)2
= LQ(ωr; θr;π

θr) //Definition in Eq. (11)

Next, we use several telescoping technique to associate the last display with the evaluation error. In the
forthcoming derivations, we will write Q̂π

θr

h as the approximated Q-function, and refer to the corresponding
Bellman error

Eπ
θr
(ψ) :=

1

2
Eπ

θr

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− Q̂π
θr

h (Z̄h)
)2

(58)

as the evaluation error ϵeval(θr) . We will also invoke the definitions of the statistical and approximation
error for Q-NPG algorithm, which we would like to repeat it here for the reader’s convenience.

ϵapprox(θr) := inf
ω∈Rdθ

Eπ
θr

P

H−1∑
h=0

γh
(
Q̂π

θr

h (Z̄h)− ω⊤∇θfθr (Zh, Ah;h)
)2

(59)

ϵstat(ωr; θr) := Eπ
θr

P

H−1∑
h=0

γh
(
Q̂π

θr

h (Z̄h)− ωr⊤∇θfθr (Zh, Ah;h)
)2
− ϵapprox(θr) (60)

Now we are ready to state that,

LQ(ωr; θr;π
θr) = Eπ

θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

)2
=Eπ

θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− Q̂π
θr

h (Z̄h) + Q̂π
θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

)2
//Telescope a term of Q̂π

θr

h

33

≤2 · Eπ
θr

P

H−1∑
h=0

γh
(
Qπ

θr

h (Z̄h)− Q̂π
θr

h (Z̄h)
)2

+ 2 · Eπ
θr

P

H−1∑
h=0

γh
(
Q̂π

θr

h (Z̄h)− ω⊤
r ∇θfθr (Zh, Ah;h)

)2
//(a+ b)2 ≤ 2a2 + 2b2

=4 · ϵeval(θr) + 2 · (ϵstat(ωr; θr) + ϵapprox(θr)) //Eq. (58), Eq. (59), and Eq. (60).

Putting things together, we conclude

LA(ωr; θr;π
θr) ≤ LQ(ωr; θr;π

θr) ≤ 4ϵeval(θr) + 2ϵstat(ωr; θr) + 2ϵapprox(θr) (61)

Remark 10. Even though the compatible function approximation error relates to the advantage function, we
don’t need to calculate the advantage function directly from the Q-functions using Aπ

θr

h (Z̄h) = Qπ
θr

h (Z̄h)−
EAh∼πθ(·|Zh)Q

πθr

h (Zh, Ah), as done in [9]. In fact, this conversion is possibly intractable, since it requires
evaluating all possible actions for every historical input, which results in a high computational cost of
O
(
OHAH

)
. To address this challenge, we can directly adopt a Q-function estimate and run Q-NPG instead,

which still allows us to control the error of LA(ωr; θr;π
πθr

), as shown in Eq. (61).

C.1.4 Lemma 11

We present a linear speedup guarantee for running a minibatch parallel SGD algorithm on smooth
functions under the Poliak-Łojasiewicz condition.

Lemma 11 (Adapted from Theorem 1 of [20]). Suppose the following assumptions hold: the stochastic
gradients are unbiased and their variance evaluated on a minibatch of size B is bounded as E

[
∥g̃ − g∥2

]
≤

C1∥g∥2 + σ2

B , where C1 and σ are non-negative constants, and the objective function F (x) is differentiable
and L-smooth: ∥∇F (x) − ∇F (y)∥ ≤ L∥x − y∥,∀x,y ∈ Rd, and it satisfies the Polyak-Łojasiewicz (PL)
condition with constant µF : 1

2∥∇F (x)∥
2
2 ≥ µF (F (x)− F (x∗)) ,∀x ∈ Rd with x∗ is an optimal solution,

that is, F (x) ≥ F (x∗) ,∀x. For LUPA-SGD [20] with τ local updates, if we choose the learning rate as

ηt = 4
µF (t+a) where a = ατ + 4 with α being a constant satisfying α exp

(
− 2
α

)
< κ

√
192

(
p+1
p

)
, choose

mini-batch size as b, local step number as K = O

(
T

2
3

M
1
3 b

1
3

)
, the functional suboptimality is controlled by

E [F (x̄T)]− F ∗ ≤a
3 (F (x0)− F ∗)

(T + a)3
+

4Lσ2

µ2
F bM

1

T + a
+

256L2σ2

µ3
F bM

T (K − 1)

(T + a)3
≲

L

µ2
F

σ2

bMT
(62)

Remark 11. For linear regression problems where F (x) = ∥Ax−b∥2
2

2 , it is straightforward to evaluate that it
satisfies the PL condition with µF = λmin

(
A⊤A

)
. It is also L-smooth, with L = λmax

(
A⊤A

)
. 1 Notably,

optimizing the compatible function approximation problem is also a least square regression. Specifically,
minimize

ω
LA(ω; θ;π

θ) = minimize
ω

ω⊤Fθ ω − 2⟨c, ω⟩ where c = Eπθ
[∑H−1

h=0 γ
hAπ

θ

(Z̄h)∇θ lnππ
θ

h (Ah|Zh)
]
.

According to Eq. (22), c = ∇θVπ
θ

, which implies that

minimize
ω

LA(ω; θ;π
θ) = minimize

ω
ω⊤Fθ ω − 2⟨∇θVπ

θ

, ω⟩ = minimize
ω

1

2
∥Aω − b∥22

where A, b is any solution to A⊤A = 2Fθ and b⊤A = ∇θVπ
θ

. Consequently, the regularity constants for the
compatible function approximation problem is L = 2λmax

(
Fπθ

)
and µF = 2λmin

(
Fπθ

)
.

1Here, we use λmin(A) and λmax(B) to represent the minumum and maximum eigenvalues of matrix A.

34

Remark 12. When the Fisher information matrix is positive definite, direct computation reveals that the
optimal solution ω⋆r := F⊤

θr
∇θVπ

θr ensures

∇θLA(ω
⋆
r ; θr, π

θr) =− 2 · Eπ
θr

[
H−1∑
h=0

γh
(
Aπ

θr

h −∇⊤
θ lnπθrh (Ah|Zh)ω⋆r

)
lnππ

θr

h (Ah|Zh)

]

=− 2 · Eπ
θr

[
H−1∑
h=0

γh
(
Qπ

θr

h −∇⊤
θ lnπθrh (Ah|Zh)ω⋆r

)
lnππ

θr

h (Ah|Zh)

]
=− 2 ·

(
∇θVθr −F⊤

θrω
⋆
r

)
= 0

(63)

where the second step is due to Theorem 4.

C.2 Proof of Lemma 2
Proof. Let us first show the result concerning sample complexity. Under the convention that T = RK, if we
pick K = T 1/2

M1/2 (which implies R = (MT)1/2), Theorem 2 implies that

Vπ
⋆

− Eθr

[
1

R

R∑
r=1

Vπ
θr

]
≤
HW
√
2βD + 1

µF

√
κHLσ2

w√
MK

+ ϵapp = O

(
1√
MK

)
+ ϵapp

where we abbreviated the function approximation error
√
κH
R

∑R
r=1

√
E ϵapprox (θr) as ϵapp. Consequently, to

ensure ϵ-suboptimality, the number of sample trajectories used in each round r is

Nper_round = K ≥
H2W 2βD + 1

µF
κHLσ2

w

M(ϵ− ϵapp)2
≈
H2W 2βD + 1

µF
κHLσ2

w

Mϵ2

provided that the function approximation error is small. Consequently, the total number of samples used in
all the policy updates combined is

Ntotal = T = RK =MK2 ≳
H4W 4β2D2 + κ2

µ2
F
H2L2σ2

w

Mϵ4

, exhibits a linear speedup w.r.t. M . For communication complexity, the number of times of gradient
communication equals R · I = R · O

(
T 1/3

M2/3

)
= O

(
T 5/6

M1/6

)
in each round, which is accompanied with

R =
√
MT times of synchronizations of the policy parameter.

C.3 Proof of Theorem 3
Proof. According to Eq. (42), the Bellman error of policy evaluation is E E

(
ψ̂r; θr

)
is controlled by

Õ
(

H
MTe

(
dQ+σ2

g

νϕ2

))
. We set the number of local steps for policy improvement K =

√
T
M , number of

rounds of policy update R =
√
MT and the number of steps for policy evaluation as Te = K. This allows the

functional suboptimality to be

Vπ
⋆

− Eθ1:R

[
1

R

R∑
r=1

Vπ
θr

]
≲
HW
√
βD + 1

µF

√
κHLσ2

g +

√
κH2

(
dQ+σ2

g

νϕ2

)
√
MK

+ ϵapp

To ensure ϵ-suboptimality, we need to ensure

K ≳
H2W 2βD + 1

µ2
F
κHLσ2

g + κH2
(
dQ+σ2

g

νϕ2

)
M(ϵ− ϵapp)2

≈
H2W 2βD + 1

µ2
F
κHLσ2

g + κH2
(
dQ+σ2

g

νϕ2

)
Mϵ2

35

provided that the function approximation error is small. These facts imply that the total sample complexity
of Algorithm 1 is

Ntotal = Neval +Nimprove = 2T = 2MK2 = O

(
C2

Mϵ4

)
where C = H2W 2βD + κ

µ2
F
HLσ2

g + κH2
(
dQ+σ2

g

νϕ2

)
.

As for communication complexity, Algorithm 1 requires sending parameter θ ∈ Rdθ and ω ∈ Rdθ

for R + C = O
(√

MT + T 5/6M−1/6
)

times, while communicating Q-network parameter ψ ∈ RdQ for

R · (MTe)
1/3 = (MT)1/3. Putting things together, we need to communicate

Ptotal = O
(
(MT)1/2 + T 5/6M−1/6

)
dθ + (MT)1/3 · dQ

floating-point parameters.

36

